Comparison of orbital launch systems

This is the comparison of orbital launch systems page. It contains two lists of conventional orbital launch systems (individual rocket configurations), separated by operational status. For the simple list of all conventional launcher families, see: Comparison of orbital launchers families. For the list of predominantly solid-fueled orbital launch systems, see: Comparison of solid-fueled orbital launch systems.

Spacecraft propulsion[note 1] is any method used to accelerate spacecraft and artificial satellites. A conventional solid rocket or a conventional solid-fuel rocket is a rocket with a motor that uses solid propellants (fuel/oxidizer).[note 2] Orbital launch systems are rockets and other systems capable of placing payloads into or beyond Earth orbit. All current spacecraft use conventional chemical rockets (bipropellant or solid-fuel) for launch, though some[note 3] have used air-breathing engines on their first stage.[note 4]

Current and upcoming rockets

Orbits legend:

Launch system status legend
  Under development
  Operational
Vehicle Origin Manufacturer Payload mass to ... (kg) Orbital launches incl. failures[lower-alpha 1] Date of flight
LEO GTO Other First[lower-alpha 2] Latest
Alpha  United States Ukraine Firefly Aerospace 1,000[1] 630 to SSO 0 2020[2]
Angara 1.2  Russia Khrunichev 3,500[3] 2,400 to SSO 0 2020[4][lower-alpha 3]
Angara A5  Russia Khrunichev 24,000[3] 7,500 with KVTK
5,400 with Briz-M [3]
1 2014 2014
Antares 230 / 230+  United States Northrop Grumman 8,200[6] 3,000 to SSO[lower-alpha 4] 6[7] 2016 2020
Ariane 5 ECA  Europe EADS Astrium 21,000[8] 10,865[9][lower-alpha 5] 73[11] 2002 2019
Ariane 6 A62  Europe ArianeGroup 10,350[12]:45 5,000[12]:33 6,450 to SSO
3,000 to HEO
3,000 to TLI [12]:40–49
0 2020[13][14]
Ariane 6 A64  Europe ArianeGroup 21,650[12]:46 11,500+ [12]:33 14,900 to SSO
5,000 to GEO
8,400 to HEO
8,500 to TLI [12]:40–49
0 2021–2022[13]
Astra  United States Astra Space 100[15] 0 2020[15]
Atlas V 401  United States ULA 9,050[16] 4,950 6,670 to SSO 38[16] 2002 2018
Atlas V 411  United States ULA 9,050[16] 6,075 8,495 to SSO 5[16] 2006 2018
Atlas V 421  United States ULA 9,050[16] 7,000 9,050 to SSO 7[16] 2007 2017
Atlas V 431  United States ULA 9,050[16] 7,800 9,050 to SSO 3[16] 2005 2016
Atlas V 501  United States ULA 8,250[16] 3,970 5,945 to SSO
1,500 to GEO
6[16] 2010 2020
Atlas V 521  United States ULA 13,300[16] 6,485 9,585 to SSO
2,760 to GEO
2[16] 2003 2004
Atlas V 531  United States ULA 15,300[16] 7,425 11,160 to SSO
3,250 to GEO
3[16] 2010 2013
Atlas V 541  United States ULA 17,100[16] 8,240 12,435 to SSO
3,730 to GEO
6[16] 2011 2018
Atlas V 551  United States ULA 18,500[16] 8,700 13,550 to SSO
3,960 to GEO
10[16] 2006 2019
Atlas V N22[lower-alpha 6]  United States ULA 13,000 1 2019[18]
Beta  United States Ukraine Firefly Aerospace 4,000[19] TBA 3,000 to SSO 0 TBA
Bloostar  Spain Zero 2 Infinity 140[20] 75 to SSO[20] 0 TBA
Blue Whale 1  South Korea Perigee Aerospace 63[21] 50 to SSO 0 2020[22]
Ceres-1  China Galactic Energy 350 270 to SSO 0 2020[23]
Cyclone-4M  Ukraine Yuzhnoye
Yuzhmash
5,000[24] 1,000[25] 3,350 to SSO[24] 0 2021[26]
Delta IV Heavy  United States ULA 28,790[27] 14,220 23,560 to polar
11,290 to TLI
8,000 to TMI
11[28] 2004 2019
Electron  United States
 New Zealand
Rocket Lab 225[29] 150 to SSO 12[30] 2017 2020
Epsilon  Japan IHI[31] 1,500[32] 590 to SSO 4[33] 2013 2019
Eris-S  Australia
 Singapore
Gilmour Space Technologies 200[34] 0 2021–2022[35]
Eris-L  Australia
 Singapore
Gilmour Space Technologies 450[34] 0 TBA
Falcon 9 Full Thrust
(partially reusable)
 United States SpaceX 16,800+[36][lower-alpha 7] 5,500[37][lower-alpha 8] 9,600 to polar[39] 55[40][41][lower-alpha 9] 2015 2020
Falcon 9 Full Thrust
(expended)
 United States SpaceX 22,800[37][lower-alpha 7] 6,500[38]–8,300[37] 4,020 to TMI 14[44][45] 2017 2020
Falcon Heavy
(partially reusable)[46]
 United States SpaceX 30,000[47]–57,000[48] 8,000[37]–10,000[lower-alpha 10] 3[49][50] 2018 2019
Falcon Heavy
(expended)
 United States SpaceX 63,800[37] 15,000[38]–26,700[37] 16,800 to TMI 0 [lower-alpha 11]
GSLV Mk II  India ISRO 5,000[51] 2,700[52][lower-alpha 12] 7[53] 2010 2018
GSLV Mk III  India ISRO 10,000[54] 4,000 4[55] 2017[lower-alpha 13] 2019
H-IIA 202  Japan Mitsubishi 8,000[57]:67 4,000[57]:48 5,100 to SSO[lower-alpha 14]
[57]:64–65
26[58] 2001 2018
H-IIA 204  Japan Mitsubishi 5,950[57]:48 4[58] 2006 2017
H3  Japan Mitsubishi 4,000[59] 6,500[60] 4,000 to SSO[61] 0 2020[61][62]
Hyperbola-1  China i-Space 300[63] 1[64] 2019[65][lower-alpha 15] 2019
Hyperbola-2  China i-Space 2,000[63] 0 2021[63]
Jielong 1[66]  China CALT 200 (SSO) 1[66] 2019 2019
Kaituozhe-2  China CASC 800[67] 1[67] 2017 2017
Kuaizhou 1/1A  China ExPace 400[68] 9[68] 2013[lower-alpha 16] 2019
Kuaizhou 11  China ExPace 1,500[69] 1,000 to SSO[70] 0 2020[71]
Kuaizhou 21  China ExPace 20,000[72] 0 2025[70]
LauncherOne  United States Virgin Orbit 500[73] 300 to SSO[74] 1 2020
Long March 2C  China CALT 3,850
1,250 with CTS2 2,000 to SSO with YZ-1S[75] 57[76][lower-alpha 17] 1982 2019
Long March 2D  China SAST 4,000 1,150 to SSO 46[76] 1992 2020
Long March 2F  China CALT 8,600 13[76] 1999 2016
Long March 3A  China CALT 6,000[77] 2,600 5,000 to SSO 27[78] 1994 2018
Long March 3B/E  China CALT 11,500[77] 5,500 6,900 to SSO 53[78] 2007 2020
Long March 3C  China CALT 9,100[77] 3,800 6,500 to SSO 17[78] 2008 2019
Long March 4B  China SAST 4,200[79] 1,500 2,800 to SSO 35[79] 1999 2019
Long March 4C  China SAST 4,200[80] 1,500 2,800 to SSO 28[79] 2006 2019
Long March 5  China CALT 25,000[81] 14,000 15,000 to SSO[82]
8,200 to TLI[83]
5,000 to TMI[83]
3[82] 2016 2019
Long March 5B  China CALT 22,000[82] 1[82] 2020[84]
Long March 6  China SAST 1,080 to SSO[85] 3[86] 2015 2019
Long March 7  China CALT 13,500[87] 5,500 to SSO 2[88] 2016[89] 2017
Long March 7A  China CALT 5,500 to 7,000[84] 1 2020 2020
Long March 8
(partially reusable)[90]
 China CALT 7,600[91] 2,500 4,500 to SSO 0 2021[90]
Long March 9[92]  China CALT 140,000[93] 66,000[94] 50,000 to TLI[93]
44,000 to TMI[90]
0 2028[95]–2030[90]
Long March 11  China CALT 700[96] 350 to SSO 8[97] 2015 2019
Minotaur I  United States Northrop Grumman 580[98] 10[99] 2000 2013
Minotaur IV  United States Northrop Grumman 1,735[100] 4[101] 2010 2017
Minotaur V  United States Northrop Grumman 670[101] 465 to HCO 1[101] 2013 2013
Minotaur-C (Taurus)[102]  United States Northrop Grumman 1,458[103] 1,054 to SSO[lower-alpha 18] 10[104] 1994 2017
Miura 5  Spain PLD Space 300[105] 0 2021[105]
New Glenn  United States Blue Origin 45,000[106] 13,000 0 2021[107]
New Line 1
(partially reusable)[108]
 China LinkSpace 200 to SSO[108] 0 2020[108]
Nuri (KSLV-2)  South Korea KARI 1,500 at 600–800 km[109] 0 2021[109][lower-alpha 19]
OmegA Intermediate  United States Northrop Grumman 22,000[110] 9,200[110] 3,200 to GEO[110] 0 2021[111]
OmegA Heavy  United States Northrop Grumman 23,200[110] 14,000[110] 6,700 to GEO[110] 0 2022[111]
OS-M1  China OneSpace 205[112] 143 to SSO 1 2019[113][lower-alpha 20] 2019
OS-M2  China OneSpace 390[112] 292 to SSO 0 TBA
Pegasus  United States Northrop Grumman 500[115] 44[115][116] 1990 2019
Prime  United Kingdom Orbex 220[117] 150 to SSO[lower-alpha 4][118] 0 2021[118]
Proton-M / M+  Russia Khrunichev 23,000 (M+)[119]
21,600 (M)[120]
6,920 (M+)
6,150 (M)
108[121][122][123] 2001 2019
PSLV-CA  India ISRO 2,100[124] 1,100 to SSO 14[124] 2007 2019
PSLV-DL  India ISRO 1[124] 2019 2019
PSLV-QL  India ISRO 2[124] 2019 2019
PSLV-XL  India ISRO 3,800[124] 1,300 1,750 to SSO
1,350 to TMI[125]
21[124] 2008 2019
Qased  Iran Operator: Iranian Revolutionary Guard Corps 1 2020 2020
RS1  United States ABL Space Systems 1,200[126] 400 875 to SSO 0 2020
Safir  Iran Iranian Space Agency 65[127] 7[127][lower-alpha 21] 2008 2019
Shavit  Israel IAI 300[128] 10[129] 1988 2016
Simorgh  Iran Iranian Space Agency 350[130] 2[130][lower-alpha 22] 2017 2019
Soyuz-2.1a  Russia TsSKB-Progress 7,020 from Baikonur[131] 33[132][133][134] 2006[lower-alpha 23] 2019
Soyuz-2.1b  Russia TsSKB-Progress 8,200 from Baikonur[131] 2,400[135] 32[133][136] 2006 2019
Soyuz ST-A  Russia
 Europe
TsSKB-Progress
Arianespace
7,800 from Kourou[137] 2,810 with Fregat[138] 6[133] 2011 2018
Soyuz ST-B  Russia
 Europe
TsSKB-Progress
Arianespace
9,000 from Kourou[139] 3,250 with Fregat[138] 4,400 to SSO[140] 16[133] 2011 2019
Soyuz-2-1v  Russia TsSKB-Progress 2,800[141] 1,400 to SSO 5[141] 2013 2019
Soyuz-5 / Irtysh  Russia TsSKB-Progress
RSC Energia
18,000[142] 2,500 to GEO 0 2022[143][144]
Space Launch System Block 1[lower-alpha 24]  United States NASA / Boeing (core)
Northrop Grumman (SRBs)
95,000[145] 26,000 to TLI[145] 0 2021[146]
SLS Block 1B[lower-alpha 25]  United States NASA / Boeing
Northrop Grumman
105,000[147] 37,000 to TLI[145] 0 2024[148]
SLS Block 2[lower-alpha 26]  United States NASA / Boeing
Northrop Grumman
130,000[149] 45,000 to HCO[145] 0 late 2020s (TBD)
SS-520  Japan IHI Aerospace 4[150] 2[151] 2017[152][lower-alpha 27] 2018
SSLV  India ISRO 500[153] 300 to SSO 0 2020[154]
Starship[155]
(Single launch)
 United States SpaceX 100,000+[155][note 5] 21,000[156] 0 2020[157]
Starship[155]
(Additional refuelling launches)
 United States SpaceX 100,000+[155][note 6] 100,000+
[155]
100,000+ to Mars surface[155]
100,000+ to lunar surface[155]
0 2023[158]
Terran 1  United States Relativity Space 1,250[159] 900 to SSO 0 2021[160]
Unha  North Korea KCST 100[161] 4[162] 2009[lower-alpha 28] 2016
Vega  Europe ESA / ASI 1,500[lower-alpha 29][163] 1,330 to SSO[164] 15[165] 2012 2019
Vega C  Europe ESA / ASI 2,200[lower-alpha 29][166] 0 2020[167]
Vega E  Europe ESA / ASI 3,000[lower-alpha 29][168] 0 2024[169]
Vikram l[170]  India Skyroot aerospace[171] 280 200 to SSPO 0 2021[172]
Vikram ll[170]  India Skyroot aerospace 520 410 to SSPO 0 TBA
Vikram lll[170]  India Skyroot aerospace 720 580 to SSPO 0 TBA
Vulcan / Centaur  United States ULA 27,000[173] 14,000[173] 6,500 to GEO[173]
11,300 to TLI [12]:40–49
0 2021[174]
Vulcan / ACES  United States ULA 27,000[173] 14,400[lower-alpha 30] 7,200 to GEO [lower-alpha 30]
12,100 to TLI [173]
0 2023[175]
Yun Feng  Taiwan National Chung-Shan Institute of Science and Technology 200[176] 0 TBA
Yenisei[177]  Russia TsSKB-Progress
RSC Energia
88,000 – 115,000[144] 20,000 to TLI[178][179] 0 2028[179]
Zero  Japan Interstellar Technologies 100 to SSO[lower-alpha 4][180] 0 2022–2023[181]
Zhuque-1  China LandSpace 300[182] 200 to SSO 1[183] 2018[183] 2018
Zhuque-2  China LandSpace 4,000[184] 2,000 to SSO 0 2020[185]
  1. Suborbital flight tests and on-pad explosions are excluded, but launches failing en route to orbit are included.
  2. Effective year for active rockets, planned year for rockets in development
  3. A suborbital flight was conducted in 2014 as Angara-1.2pp, testing only the first and second stages.[5]
  4. Reference altitude 500 km
  5. Upgraded to 11,115 kg by 2020[10]
  6. for Starliner[17]
  7. PAF structural limit: 10,886 kg[43]
  8. GTO payload is 5,550 kg when the first stage lands downrange on a drone ship (ASDS). Reduced to 3,500 kg if the first stage returns to the launch site (RTLS).[38]
  9. Additionally, one rocket exploded on the launch pad in 2016.[42]
  10. GTO payload is 8,000 kg when the core first-stage booster lands downrange on a drone ship (ASDS) and the side boosters return to the launch site (RTLS). Increased to 10,000 kg if all boosters land on drone ships.[38]
  11. As of 2019 Falcon Heavy has only flown in partially reusable configuration; fully expendable configuration is considered operational in the sense that it is a simplified version of the reusable configuration.
  12. GTO payload with enhanced engines, as of GSLV version 2A[53]
  13. A suborbital test flight was conducted in 2014 (designated LVM-3/CARE) without the cryogenic upper stage (CUS).[56]
  14. 5,100 kg to a 500-km Sun-synchronous orbit; 3,300 kg to 800 km[57]:64–65
  15. A suborbital test flight was conducted in April 2018.[63]
  16. A suborbital test flight was conducted in March 2012.[68]
  17. Includes 6 possible launches of CZ-2C (3) noted by Gunter Krebs in reference [76].
  18. Reference altitude 400 km
  19. A suborbital test flight was conducted in November 2018.
  20. A suborbital test flight was conducted in May 2018.[114]
  21. Additionally, two rockets exploded on the launch pad, one in 2012 and one in 2019.[127]
  22. A suborbital test flight succeeded in 2016; both orbital flights in 2017 and 2019 failed.[130]
  23. Suborbital test flight in 2004, without Fregat upper stage.[132]
  24. with ICPS
  25. with EUS
  26. with EUS and
    advanced boosters
  27. A prior version of the SS-520 flew twice as a suborbital sounding rocket in 1998 and 2000. In 2017, the addition of a small third stage enabled orbital launches of ultra-light nano- or picosatellites.[150]
  28. A suborbital test flight failed in 2006. The first two orbital missions failed in 2009 and 2012, and the rocket finally reached orbit in late 2012.[162]
  29. Reference altitude 700 km

Retired and canceled rockets

Vehicle Origin Manufacturer Mass to ... (kg) Launches
(+ suborbital)
Date of flight
LEO GTO Other First Last
Antares 110–130  United States Orbital 5,100[6] 1,500 to SSO 5[6] 2013 2014
Ariane 1  Europe Aérospatiale 1,400 1,830[186] 11[186] 1979 1986
Ariane 2  Europe Aérospatiale 2,270[186] 6[186] 1986 1989
Ariane 3  Europe Aérospatiale 2,650[186] 11[186] 1984 1989
Ariane 4 40  Europe Aérospatiale 4,600[186] 2,105 2,740 to SSO 7[186] 1990 1999
Ariane 4 42L  Europe Aérospatiale 7,000[186] 3,480 4,500 to SSO 13[186] 1993 2002
Ariane 4 42P  Europe Aérospatiale 6,000[186] 2,930 3,400 to SSO 15[186] 1990 2002
Ariane 4 44L  Europe Aérospatiale 7,000[186] 4,720 6,000 to SSO 40[186] 1989 2003
Ariane 4 44LP  Europe Aérospatiale 7,000[186] 4,220 5,000 to SSO 26[186] 1988 2001
Ariane 4 44P  Europe Aérospatiale 6,500[186] 3,465 4,100 to SSO 15[186] 1991 2001
Ariane 5 G  Europe EADS Astrium 18,000[11] 6,900[11] 16[11] 1996 2003
Ariane 5 G+  Europe EADS Astrium 7,100[11] 3[11] 2004 2004
Ariane 5 GS  Europe EADS Astrium 16,000[187] 6,600[11] 6[11] 2005 2009[188]
Ariane 5 ES  Europe EADS Astrium 21,000[8] 8,000[11] 8[11] 2008 2018
ASLV  India ISRO[189] 150[190] 4[190] 1987 1994
Athena I  United States Lockheed Martin 795[191] 515 4[192] 1995 2001
Athena II  United States Lockheed Martin 1,800[193] 3[194] 1998 1999[195]
Atlas-Centaur  United States Lockheed 1,134[196] 2,222[197] 148 1962 1983
Atlas G  United States Lockheed 5,900[198] 2,222 1,179 to HCO[198] 7[198] 1984 1989
Atlas H/MSD  United States Lockheed 3,630[199] 5 1983 1987
Atlas I  United States Lockheed Martin 5,900[198] 2,340[198] 11[198] 1990 1997
Atlas II  United States Lockheed Martin 6,780[198] 2,810 2,000 to HCO[198] 10[198] 1991 1998
Atlas IIA  United States Lockheed Martin 7,316[198] 3,180 2,160 to HCO[198] 23[198] 1992 2002
Atlas IIAS  United States Lockheed Martin 8,618[198] 3,833 2,680 to HCO[198] 30[198] 1993 2004
Atlas IIIA  United States Lockheed Martin 8,686[198] 4,060 2,970 to HCO[198] 2[198] 2000 2004
Atlas IIIB/DEC  United States Lockheed Martin 10,759[198] 4,609[198] 1[198] 2002 2002
Atlas IIIB/SEC  United States Lockheed Martin 10,218[200] 4,193[198] 3[198] 2003 2005
Black Arrow  United Kingdom RAE 73[201] 2 (+2) 1969[lower-alpha 1] 1971
Commercial Titan III  United States Martin Marietta 13,100[202] 4 1990 1992
Delta 0300  United States McDonnell Douglas 340[203] 747 to SSO[204] 3[205] 1972 1973[206]
Delta 0900  United States McDonnell Douglas 1,300[207] 818 to SSO[205] 2[205] 1972 1972
Delta 1410  United States McDonnell Douglas 340[208] 1[205] 1975 1975
Delta 1604  United States McDonnell Douglas 390[209] 2[205] 1972 1973
Delta 1900  United States McDonnell Douglas 1,800[205] 1[205] 1973 1973
Delta 1910  United States McDonnell Douglas 1,066[210] 1[205] 1975 1975
Delta 1913  United States McDonnell Douglas 328[211] 1[205] 1973 1973
Delta 1914  United States McDonnell Douglas 680[212] 2[205] 1972 1973
Delta 2310  United States McDonnell Douglas 336[213] 3[205] 1974 1981
Delta 2313  United States McDonnell Douglas 243 to GEO[214] 3[205] 1974 1977
Delta 2910  United States McDonnell Douglas 1,887[205] 6[205] 1975 1978
Delta 2913  United States McDonnell Douglas 2,000[215] 700[215] 6[205] 1975 1976
Delta 2914  United States McDonnell Douglas 724[205] 30[205] 1974 1979
Delta 3910  United States McDonnell Douglas 2,494[205] 1,154 with PAM-D 10[205] 1980 1988
Delta 3913  United States McDonnell Douglas 816[216] 1[205] 1981 1981
Delta 3914  United States McDonnell Douglas 954[205] 13[205] 1975 1987
Delta 3920  United States McDonnell Douglas 3,452[205] 1,284 with PAM-D 10[205] 1982 1989
Delta 3924  United States McDonnell Douglas 1,104[205] 4[205] 1982 1984
Delta 4925  United States McDonnell Douglas 3,400[217] 1,312[205] 2[205] 1989 1990
Delta 5920  United States McDonnell Douglas 3,848[218] 1[205] 1989 1989
Delta II 6920  United States McDonnell Douglas 3,983[205] 3[205] 1990 1992
Delta II 6925  United States McDonnell Douglas 1,447[205] 14[205] 1989 1992
Delta II 7320  United States Boeing IDS / ULA 2,865[205] 1,651 to SSO 12[205] 1999 2015
Delta II 7326  United States Boeing IDS 934[205] 636 to TLI
629 to HCO
3[205] 1998 2001
Delta II 7420  United States ULA 3,185[205] 1,966 to SSO 14[205] 1998 2018
Delta II 7425  United States Boeing IDS 1,100[205] 804 to HCO 4[205] 1998 2002
Delta II 7426  United States Boeing IDS 1,058[205] 734 to TLI
711 to HCO
1[205] 1999 1999
Delta II 7920  United States Boeing IDS / ULA 5,030[205] 3,123 to SSO 29[205] 1998 2017
Delta II 7925  United States Boeing IDS / ULA 1,819[205] 1,177 to TLI
1,265 to HCO
69[205] 1990 2009
Delta II-H 7920H  United States Boeing IDS / ULA 6,097[205] 3[205] 2003 2011
Delta II-H 7925H  United States Boeing IDS / ULA 2,171 1,508 to HCO[205] 3[205] 2003 2007
Delta III 8930  United States Boeing IDS 8,292[205] 3,810 3[205] 1998 2000
Delta IV M  United States Boeing IDS 9,440[27] 4,440 7,690 to polar 3[28] 2003 2006
Delta IV M+(4,2)  United States ULA 13,140[27] 6,390 10,250 to polar 14[28] 2002 2019
Delta IV M+(5,2)  United States ULA 11,470[27] 5,490 9,600 to polar 3[28] 2012 2018
Delta IV M+(5,4)  United States ULA 14,140[27] 7,300 11,600 to polar 8[28] 2009 2019
Diamant  France SEREB 107[219][220] 12 1965 1975
Dnepr  Ukraine Yuzhmash 3,700[221] 22[221] 1999 2015[222]
Energia[lower-alpha 2]  Soviet Union NPO Energia 100,000[223] 20,000 to GEO[223]
32,000 to TLI[223]
1 (failed to orbit)[224] 1987 1987
Energia-Buran  Soviet Union NPO Energia (Launcher)
NPO Molniya (Orbiter)
30,000[223][lower-alpha 3] 1 1988 1988
Falcon 1  United States SpaceX 470[225] 5[225] 2006 2009
Falcon 9 v1.0  United States SpaceX 10,450[226] 4,540[226] 5[227] 2010 2013
Falcon 9 v1.1  United States SpaceX 13,150[228][lower-alpha 4] 4,850[228] 15[227] 2013 2016
Feng Bao 1  China Shanghai Bureau No.2 2,500[229] 8 (+3)[230] 1972 1981
GSLV Mk.I(a)  India ISRO 5,000[51] 1,540[231] 1[231] 2001 2001
GSLV Mk.I(b)  India ISRO 5,000[51] 2,150[231] 4[231] 2003 2007
GSLV Mk.I(c)  India ISRO 5,000[51] 1[231] 2010 2010
H-I  Japan
 United States
Mitsubishi 1,400[232] 9 1986 1992
H-II / IIS  Japan Mitsubishi 10,060[233] 4,000[234] 7[234] 1994 1999
H-IIA 2022  Japan Mitsubishi 4,500[58] 3[58] 2005 2007
H-IIA 2024  Japan Mitsubishi 11,000[235] 5,000[58] 7[58] 2002 2008
H-IIB  Japan Mitsubishi 16,500 (ISS)[60] 8,000 8[236] 2009 2019
J-I  Japan Nissan Motors[237] 1,000[238] 0 (+1) 1996 1996
Kaituozhe-1  China CALT 100[239] 2 2002 2003
Kosmos-3M  Soviet Union
 Russia
NPO Polyot 1,500[240] 442[241] 1967 2010
Lambda 4S  Japan Nissan Motors[237] 26[242] 5 1966 1970
Long March 1  China CALT 300[243] 2[244] 1970 1971
Long March 1D  China CALT 740[245] 0 (+3)[244] 1995[lower-alpha 5] 2002
Long March 2A  China CALT 2,000[246] 4[76] 1974 1978
Long March 2E  China CALT 9,200[76] 7[76] 1990 1995
Long March 3  China CALT 5,000[78] 13[78] 1984 2000
Long March 3B  China CALT 11,200[77] 5,100 5,700 to SSO 12[78] 1996 2012
Long March 4A  China CALT 4,000 2[79] 1988 1990
M-V  Japan Nissan Motors[237] (1997–2000)
IHI Aerospace[31] (2000–2006)
1,850[242] 7 1997 2006
Molniya  Soviet Union RSC Energia 1,800[247] 40[248] 1960 1967
Molniya-M  Soviet Union
 Russia
RSC Energia 2,400[249] 280[250] 1965 2010
Mu-3C  Japan Nissan Motors[237] 195[242] 4 1974 1979
Mu-3H  Japan Nissan Motors[237] 300[242] 3 1977 1978
Mu-3S  Japan Nissan Motors[237] 300[242] 4 1980 1984
Mu-3SII  Japan Nissan Motors[237] 770[242] 8 1985 1995
Mu-4S  Japan Nissan Motors[237] 180[242] 4 1971 1972
N1  Soviet Union NPO Energia 95,000[251][252][253][lower-alpha 6] 4[254] (never reached orbit) 1969 1972
N-I  Japan
 United States
Mitsubishi 1,200[255] 7 1975 1982
N-II  Japan
 United States
Mitsubishi 2,000[256] 8 1981 1987
Naro-1  South Korea
 Russia
KARI/Khrunichev 100[257] 3 2009 2013
NOTS-EV-1 Pilot  United States United States Navy 1.05[258] 10 1958 1958
Paektusan  North Korea KCST 700[259] 0 (+1) 1998 1998
Polyot  Soviet Union RSC Energia 1,400 2 1963 1964
Proton-K  Soviet Union
 Russia
Khrunichev 19,760[260] 4,930[261] 311[262] 1965 2012
PSLV-G  India ISRO 3,200[124] 1,050 1,600 to SSO 12[124] 1993 2016[263]
Rokot  Russia Khrunichev 1,950[264] 1,200 to SSO 34[264] 1990 2019
Saturn I  United States Chrysler (S-I)
Douglas (S-IV)
9,000[265] 10[266] 1961 1965[266]
Saturn IB  United States Chrysler (S-IB)
Douglas (S-IVB)
18,600[267] 9[268] 1966 1975
Saturn V  United States Boeing (S-IC)
North American (S-II)
Douglas (S-IVB)
140,000[269][270] 47,000 to TLI[271] 13[272][273][lower-alpha 7] 1967 1973
Scout  United States US Air Force/NASA 174[274] 125 1961 1994
Shtil'  Russia Makeyev 280–420[275] 2[276] 1998 2006
SLV  India ISRO 40[277] 4[277] 1979 1983[277]
Soyuz  Soviet Union RSC Energia 6,450 31[278] 1966 1976
Soyuz-FG  Russia TsSKB-Progress 6,900[279] 70[133][280] 2001 2019
Soyuz-L  Soviet Union RSC Energia 5,500 3[281] 1970 1971
Soyuz-M  Soviet Union RSC Energia 6,600 8[282] 1971 1976
Soyuz-U  Soviet Union
 Russia
TsSKB-Progress 6,650 from Baikonour[283]
6,150 from Plesetsk[283]
786[133][134][284] 1973 2017
Soyuz-U2  Soviet Union
 Russia
TsSKB-Progress 7,050 72[285] 1982 1995
Space Shuttle  United States ATK (SRBs)
Martin Marietta (External tank)
Rockwell (Orbiter)
24,400[lower-alpha 3]
3,550 to escape with IUS[286] 135[288] 1981 2011
Sputnik 8K71PS  Soviet Union RSC Energia 500[289] 2 1957 1957
Sputnik 8A91  Soviet Union RSC Energia 1,327 2 1958 1958
Start-1  Russia MITT 532 350 to SSO[290] 5[291] 1993 2006
Strela  Russia Khrunichev 1,400[292] 3[293] 2003 2014
Titan II GLV  United States Martin Marietta 3,600[294] 11 (+1) 1964 1966
Titan II(23)G  United States Martin Marietta 3,600[295] 13 1988 2003
Titan IIIA  United States Martin Marietta 3,100[296] 4 1964 1965
Titan IIIB  United States Martin Marietta 3,000[297] 70 1966 1987
Titan IIIC  United States Martin Marietta 13,100[298] 36 1965 1982
Titan IIID  United States Martin Marietta 12,300[299] 22 1971 1982
Titan IIIE  United States Martin Marietta 15,400[300] 7 1974 1977
Titan 34D  United States Martin Marietta 4,515[301] 15 1982 1989
Titan IVA  United States Martin Marietta 17,110[302] 4,944 with IUS
22[303] 1989 1998
Titan IVB  United States Lockheed Martin 21,682[304] 5,761[304]
(9,000 with upper stage)
17[303] 1997 2005
Tsyklon-2A  Soviet Union Yuzhmash 3,350[305] 8[306] 1967 1969
Tsyklon-2  Soviet Union
 Ukraine
Yuzhmash 2,820[307] 106[308] 1969 2006[308]
Tsyklon-3  Soviet Union
 Ukraine
Yuzhmash 1,920[309] 122[310] 1977 2009[310]
Vanguard  United States Martin 9[311] 11 (+1) 1957 1959
Vector-R  United States Vector Space Systems 64[312] 0 (+2) 2017 2017
VLS-1  Brazil AEB, IAE 380[313] 2[lower-alpha 8] (never reached orbit) 1997 2003
Volna  Russia Makeyev 100[314] 1 (+5)[276] 1995[lower-alpha 9] 2005[276]
Voskhod  Soviet Union RSC Energia 6,000[315] 306 1963 1976
Vostok-L  Soviet Union RSC Energia 390 to TLI[316] 4 1960 1960
Vostok-K  Soviet Union RSC Energia 2,460[317] 16 1960 1964
Vostok-2  Soviet Union RSC Energia 4,730[317] 45 1962 1967
Vostok-2M  Soviet Union RSC Energia 1,300[318] 93 1964 1991
Soyuz/Vostok  Soviet Union RSC Energia 6,000[319] 2 1965 1966
Zenit-2  Soviet Union
 Ukraine
Yuzhnoye 13,740[320] 36[321] 1985 2004[322]
Zenit-2M / 2SLB  Ukraine Yuzhnoye 13,920[320] 2[321] 2007 2011
Zenit-3F  Ukraine Yuzhnoye 1,740 to GEO[323] 4[324] 2011 2017
Zenit-3SL  Ukraine Yuzhmash
RSC Energia
7,000[324] 6,160 36[324] 1999 2014
Zenit-3SLB / 3M  Ukraine Yuzhmash
RSC Energia
3,750[324] 6[324] 2008 2013
  1. First suborbital test in 1969, first orbital launch attempt in 1970
  2. Without Buran, and assuming payload providing orbital insertion
  3. The U.S. Space Shuttle Transportation System and the Soviet Energia-Buran system consist of launch vehicle rockets and returnable spaceplane orbiter. Payload values listed here are for the mass of the payload in cargo bay of the spaceplanes, excluding the mass of the spaceplanes themselves.
  4. The SpaceX website lists the F9 payload to LEO as 13,150kg. The payload to GTO is listed as 4,850kg. However, SpaceX has stated that these numbers include a 30% margin to accommodate re-usability.
  5. Suborbital test flights in 1995, 1997 and 2002, no orbital launches attempted
  6. The N1 rocket was initially designed for 75mt LEO capacity and launch attempts were made with this version, but there were studies to increase the payload capacity to 90–95 mt, if a liquid-hydrogen upper stage engine could be developed.
  7. The Saturn V made 13 launches, 12 of which reached the correct orbits, and the other (Apollo 6) reached a different orbit than the one which had been planned; however, some mission objectives could still be completed; NASA, Saturn V News Reference, Appendix: Saturn V Flight History (1968) Archived 2011-05-17 at the Wayback Machine. For more information, see the Saturn V article. The Saturn V launch record is usually quoted as having never failed, e.g. "The rocket was masterminded by Wernher Von Braun and did not fail in any of its flights", Alan Lawrie and Robert Godwin; Saturn, but the Apollo 6 launch should be considered a partial mission failure. The 13th launch of Saturn V was in special configuration (SA-513) with the Skylab.
  8. A third rocket exploded before launch.
  9. First orbital launch attempt in 2005

Launch systems by country

The following chart shows the number of launch systems developed in each country, and broken down by operational status. Rocket variants are not distinguished; i.e., the Atlas V series is only counted once for all its configurations 401–431, 501–551, 552, and N22.

10
20
30
40
AUS
BRZ
CHN
EUR
ESP
FRA
IND
IRN
ISR
JPN
NKR
NZL
RUS
SKR
TWN
UKR
UK
USA
  •   Operational
  •   In development
  •   Retired

See also

Notes

  1. There are many different methods. Each method has drawbacks and advantages, and spacecraft propulsion is an active area of research. However, most spacecraft today are propelled by forcing a gas from the back/rear of the vehicle at very high speed through a supersonic de Laval nozzle. This sort of engine is called a rocket engine.
  2. The first medieval rockets were solid-fuel rockets powered by gunpowder; they were used by the Chinese, Indians, Mongols and Arabs, in warfare as early as the 13th century.
  3. Such as the Pegasus rocket and SpaceShipOne.
  4. Most satellites have simple reliable chemical thrusters (often monopropellant rockets) or resistojet rockets for orbital station-keeping and some use momentum wheels for attitude control. Soviet bloc satellites have used electric propulsion for decades, and newer Western geo-orbiting spacecraft are starting to use them for north-south stationkeeping and orbit raising. Interplanetary vehicles mostly use chemical rockets as well, although a few have used ion thrusters and Hall effect thrusters (two different types of electric propulsion) to great success.
  5. Elon Musk [@elonmusk] (31 March 2020). "Mass of initial SN ships will be a little high & Isp a little low, but, over time, it will be ~150t to LEO fully reusable" (Tweet) via Twitter.
  6. Elon Musk [@elonmusk] (31 March 2020). "Mass of initial SN ships will be a little high & Isp a little low, but, over time, it will be ~150t to LEO fully reusable" (Tweet) via Twitter.

References

  1. "Firefly Alpha". Firefly Aerospace. Retrieved 29 October 2019.
  2. Clark, Steven (18 June 2019). "Firefly Offering Free Launch For Research and Education Payloads". SpaceFlightNow. Retrieved 19 June 2019.
  3. "Angara Launch Vehicle Family". Khrunichev State Research and Production Space Center. Retrieved 2 September 2018.
  4. SLP studio (17 October 2018). "Раскрыты планы пусков ракет "Протон" и "Ангара" на 2019 год" [2019 launch plans for Proton and Angara have been announced] (in Russian). Retrieved 25 October 2018 via Yandex Zen.
  5. Graham, William (9 July 2014). "Angara rocket launches on maiden flight". NASASpaceFlight.com. Retrieved 2 September 2018.
  6. Krebs, Gunter. "Antares (Taurus-2)". Gunter's Space Page. Retrieved 1 December 2019.
  7. Krebs, Gunter. "Antares 230". Gunter's Space Page. Retrieved 20 November 2019.
  8. "Ariane 5 Users Manual" (PDF). Issue 4. Arianespace. p. 39 (ISS orbit). Archived from the original (PDF) on 27 September 2007. Retrieved 13 November 2007.
  9. Clark, Stephen (2 June 2017). "Ariane 5 succeeds in launch of two high-value communications satellites". Spaceflight Now. Retrieved 17 January 2018.
  10. "Arianespace begins building final 10 Ariane 5s ahead of Ariane 6 operational debut". Space Daily. 10 January 2018. Retrieved 17 January 2018. Ariane 5 set a new record in June 2017 by lofting 10,865 kg. into geostationary transfer orbit (GTO). From this payload lift record, Ariane 5's performance will be increased another 250 kg.
  11. Krebs, Gunter. "Ariane-5". Gunter's Space Page. Retrieved 30 November 2019.
  12. Lagier, Roland (March 2018). "Ariane 6 User's Manual Issue 1 Revision 0" (PDF). Arianespace. Retrieved 27 May 2018.
  13. Clark, Stephen (13 August 2016). "Ariane 6 rocket holding to schedule for 2020 maiden flight". Spaceflight Now. Retrieved 13 August 2016.
  14. Krebs, Gunter. "Ariane-6". Gunter's Space Page. Retrieved 2 September 2018.
  15. Vance, Ashlee (3 February 2020). "A Small-Rocket Maker Is Running a Different Kind of Space Race". Bloomberg News. Retrieved 3 February 2020.
  16. Krebs, Gunter. "Atlas-5". Gunter's Space Page. Retrieved 10 August 2019.
  17. Egan, Barbara [@barbegan13] (October 15, 2016). "We are calling the config N22. No payload fairing with the Starliner on board" (Tweet) via Twitter.
  18. Roulette, Joey (22 December 2019). "'Bull's-eye' landing in New Mexico for Boeing's Starliner astronaut capsule". Reuters. Retrieved 22 December 2019.
  19. "Firefly Beta". Firefly Aerospace. Archived from the original on 12 August 2018. Retrieved 11 August 2018.
  20. "Bloostar Launch Vehicle Payload User's Guide" (PDF). Revision 2. Zero 2 Infinity. January 2018. Z2I-BS-TN-1-0316-R2. Retrieved 4 September 2018.
  21. "Perigee Aerospace Inc". Retrieved 2020-06-14.
  22. "Korean firm Perigee plans first South Australian rocket launch". 28 October 2019.
  23. "Ceres-1". Gunter's Space page. Retrieved 2020-02-20.
  24. Boucher, Marc (14 March 2017). "Exclusive: Maritime Launch Services Selects Nova Scotia Site for Spaceport Over 13 Other Locations". SpaceQ. Retrieved 18 March 2017.
  25. Krebs, Gunter. "Tsiklon-4M (Cyclone-4M)". Gunter's Space Page. Retrieved 11 April 2017.
  26. "Cyclone 4M fully integrated upper stage performs successful qualification test" (Press release). Yuzhnoye Design Office and Maritime Launch Services. 21 October 2019. Retrieved 1 December 2019.
  27. "Delta IV Launch Services User's Guide, June 2013" (PDF). United Launch Alliance. June 2013. pp. 2–10. Retrieved 9 October 2017.
  28. Krebs, Gunter. "Delta-4". Gunter's Space Page. Retrieved 17 March 2019.
  29. "Electron". Rocket Lab. Retrieved 31 August 2018.
  30. "Completed Missions". Rocket Lab. Retrieved 2020-06-14.
  31. "Projects&Products". IHI Aerospace. Archived from the original on 6 April 2011. Retrieved 8 March 2011.
  32. "Epsilon a solid propellant launch vehicle for new age" (PDF). IHI Aerospace. Retrieved 3 February 2018.
  33. Krebs, Gunter. "Epsilon". Gunter's Space Page. Retrieved 18 January 2019.
  34. "ERIS-S | ERIS-L". Gilmour Space Technologies. Retrieved 1 December 2019.
  35. "Launching small satellites to LEO from 2021/22". Gilmour Space Technologies. Retrieved 1 December 2019.
  36. https://www.digitaltrends.com/cool-tech/spacex-launches-its-first-batch-of-starlink-internet-satellites/
  37. "Capabilities & Services". SpaceX. Retrieved 5 April 2017.
  38. Koenigsmann, Hans (3 October 2018). SpaceX performance tiers to GTO. IAC 2018. Retrieved 23 October 2018.
  39. de Selding, Peter B. (June 15, 2016). "Iridium's SpaceX launch slowed by Vandenberg bottleneck". SpaceNews. Retrieved June 21, 2016.
  40. Krebs, Gunter. "Falcon-9 v1.2 (Falcon-9FT)". Gunter's Space Page. Retrieved 19 November 2018.
  41. Krebs, Gunter. "Falcon-9 v1.2 (Block 5) (Falcon-9FT (Block 5))". Gunter's Space Page. Retrieved 20 November 2019.
  42. Malik, Tariq (1 September 2016). "Launchpad Explosion Destroys SpaceX Falcon 9 Rocket, Satellite in Florida". Space.com. Retrieved 1 September 2016.
  43. "Falcon 9 Launch Vehicle – Payload User's Guide" (PDF). Revision 2. SpaceX. 21 October 2015. p. 15. Archived from the original (PDF) on 14 March 2017. Retrieved 29 November 2015.
  44. Krebs, Gunter. "Falcon-9 v1.2(ex) (Falcon-9FT(ex))". Gunter's Space Page. Retrieved 29 June 2018.
  45. Krebs, Gunter. "Falcon-9 v1.2 (Block 5)(ex) (Falcon-9FT (Block 5)(ex))". Gunter's Space Page. Retrieved 10 August 2019.
  46. Either 2 or 3 boosters recoverable
  47. Musk, Elon. Making Life Multiplanetary. SpaceX. Event occurs at 15:35. Retrieved 22 March 2018 via YouTube. BFR in fully reusable configuration, without any orbital refueling, we expect to have a payload capability of 150 tonnes to low Earth orbit and that compares to about 30 for Falcon Heavy
  48. Elon Musk [@elonmusk] (12 February 2018). "Side boosters landing on droneships & center expended is only ~10% performance penalty vs fully expended. Cost is only slightly higher than an expended F9, so around $95M" (Tweet) via Twitter.
  49. Krebs, Gunter. "Falcon-Heavy". Gunter's Space Page. Retrieved 15 April 2019.
  50. Krebs, Gunter. "Falcon-Heavy (Block 5)". Gunter's Space Page. Retrieved 15 July 2019.
  51. "Geosynchronous Satellite Launch Vehicle (GSLV)". ISRO. Retrieved August 31, 2018.
  52. Subramanian, T.S. (14 September 2018). "ISRO developing vehicle to launch small satellites". Frontline. Retrieved 29 August 2018.
  53. Krebs, Gunter. "GSLV". Gunter's Space Page. Retrieved 19 December 2018.
  54. "GSLV MkIII-M1 Successfully Launches Chandrayaan-2 spacecraft - ISRO". www.isro.gov.in. Retrieved 2019-12-01.
  55. Krebs, Gunter. "GSLV Mk.3 (LVM-3)". Gunter's Space Page. Retrieved 10 August 2019.
  56. "Crew module Atmospheric Re-entry Experiment (CARE)". ISRO. 18 December 2014. Retrieved 4 September 2018.
  57. "H-IIA – User's Manual" (PDF). 4.0. Mitsubishi Heavy Industries, MHI Launch Services. February 2015. YET04001. Retrieved 4 September 2018.
  58. Krebs, Gunter. "H-2A". Gunter's Space Page. Retrieved 12 November 2018.
  59. Only the X00 version of the H3 is intended for LEO launches. The higher capability X02 and X03 variants could presumably launch significantly more payload to LEO, but are not specified for this mission. Space Launch Report: H3 Data Sheet, retrieved 20 Feb. 2019/
  60. "MHI Launch Services: Launch Vehicles". Mitsubishi Heavy Industries, MHI Launch Services. Retrieved 4 September 2018.
  61. 新型基幹ロケットの開発状況について [Development status of the new carrier rocket] (PDF) (in Japanese). JAXA. 2 July 2015. p. 3. Retrieved July 8, 2015.
  62. Henry, Caleb (12 July 2018). "Blue Origin to offer dual launch with New Glenn after fifth mission". SpaceNews. Retrieved 12 July 2018.
  63. Jones, Andrew (15 May 2018). "Chinese commercial launch sector nears takeoff with suborbital rocket test". SpaceNews. Retrieved 16 August 2018.
  64. Krebs, Gunter. "Shian Quxian-1 (SQX-1, Hyperbola-1)". Gunter's Space Page. Retrieved 1 August 2019.
  65. Huang, Echo (25 July 2019). "A private Chinese space firm successfully launched a rocket into orbit". Quartz. Retrieved 10 August 2019.
  66. Krebs, Gunter. "Jielong-1 (Smart Dragon-1, SD 1)". Gunter's Space Page. Retrieved 2 November 2019.
  67. Krebs, Gunter. "Kaituozhe-2 (KT-2)". Gunter's Space Page. Retrieved 2 November 2019.
  68. Krebs, Gunter. "Kuaizhou-1 (KZ-1) / Fei Tian 1". Gunter's Space Page. Retrieved 8 January 2020.
  69. "快舟十一号小型固体运载火箭(KZ-11):推迟到2018年首飞" [Kuaizhou 11 small solid launch vehicle (KZ-11): First flight planned for 2018] (in Chinese). October 30, 2017. Retrieved March 10, 2018.
  70. "Kuai Zhou (Fast Vessel)". China Space Report. Archived from the original on March 11, 2018. Retrieved March 10, 2018.
  71. "快舟十一号 • 一箭六星 • 该型号火箭首飞" [Kuaizhou 11 maiden flight with six satellites] (in Chinese). 4 January 2020. Retrieved 7 January 2020.
  72. "China to test large solid-fuel rocket engine". China Daily. December 25, 2017. Retrieved March 10, 2018.
  73. Clark, Stephen (August 31, 2018). "Virgin Orbit nears first test flights with air-launched rocket". Spaceflight Now. Retrieved September 1, 2018.
  74. "LauncherOne service guide" (PDF). Virgin Orbit. 2017. Archived from the original (PDF) on 2018-03-28. Retrieved 2017-08-07.
  75. "Two satellites with secretive missions launched by China". Spaceflight Now. 12 October 2018. Retrieved 12 October 2018.
  76. Krebs, Gunter. "CZ-2 (Chang Zheng-2)". Gunter's Space Page. Retrieved 25 September 2019.
  77. "LM-3A Series Launch Vehicles User's Manual Issue 2011" (PDF). 2011. Archived from the original (PDF) on 17 July 2015. Retrieved 17 August 2015.
  78. Krebs, Gunter. "CZ-3 (Chang Zheng-3)". Gunter's Space Page. Retrieved 8 January 2020.
  79. Krebs, Gunter. "CZ-4 (Chang Zheng-4)". Gunter's Space Page. Retrieved 8 January 2020.
  80. Krebs, Gunter. "CZ-4C (Chang Zheng-4C)". Gunter's Space Page. Retrieved 16 August 2018.
  81. "ChangZheng 5 (Long March 5) Launch Vehicle". SinoDefence.com. 20 February 2009. Archived from the original on 26 February 2009. Retrieved 6 March 2009.
  82. Krebs, Gunter. "CZ-5 (Chang Zheng-5)". Gunter's Space Page. Retrieved 8 January 2020.
  83. Qin, Xudong; Long, Lehao; Rong, Yi (April 2016). "我国航天运输系统成就与展望" [Achievements and prospects of China's space transportation system]. 深空探测学报 (Journal of Deep Space Exploration) (in Chinese). doi:10.15982/j.issn.2095-7777.2016.04.003. Retrieved 28 August 2017.
  84. Jones, Andrew (14 February 2020). "China prepares to launch new rockets as part of push to boost space program". space.com. Retrieved 14 February 2020.
  85. Barbosa, Rui. "China conducts debut launch of Long March 6". NASASpaceFlight.com. Retrieved 2015-09-26.
  86. Krebs, Gunter. "CZ-6 (Chang Zheng-6)". Gunter's Space Page. Retrieved 8 January 2020.
  87. ""长征七号"运载火箭具备近地轨道13.5吨、700千米太阳同步轨道5.5吨运载能力". 新华网. 2011-12-29. Archived from the original on 2015-11-02.
  88. Krebs, Gunter. "CZ-7 (Chang Zheng-7)". Gunter's Space Page. Retrieved 19 February 2020.
  89. "长征七号首飞成功 空间实验室任务大幕拉开" [Successful maiden flight of the Long March 7 mission Damulakai]. www.spacechina.com (in Chinese). 2016-06-25. Archived from the original on 28 June 2016. Retrieved 25 June 2016.
  90. Jones, Andrew (5 July 2018). "China reveals details for super-heavy-lift Long March 9 and reusable Long March 8 rockets". SpaceNews. Retrieved 4 September 2018.
  91. Krebs, Gunter. "CZ-8 (Chang Zheng-8)". Gunter's Space Page. Retrieved 16 August 2018.
  92. Perrett, Bradley (30 September 2013). "Chinese Super-Heavy Launcher Designs Exceed Saturn V". Aviation Week. Retrieved 4 December 2014.
  93. Mizokami, Kyle (20 March 2018). "China Working on a New Heavy-Lift Rocket as Powerful as Saturn V". Retrieved 4 September 2018. Cite magazine requires |magazine= (help)
  94. "China to develop new series of carrier rockets: expert". Xinhua.net. 2 July 2018. Retrieved 25 September 2018.
  95. "China to launch Long March-9 rocket in 2028". Xinhua.net. 19 September 2018. Retrieved 25 September 2018.
  96. Chan, Kai Yee (8 October 2015). "China reveals CZ-11 anti-ASAT rocket". Chinese Daily Mail. Retrieved 4 September 2018.
  97. Krebs, Gunter. "CZ-11 (Chang Zheng-11)". Gunter's Space Page. Retrieved 20 September 2019.
  98. "Minotaur I Space Launch Vehicle—Fact Sheet" (PDF). Orbital Sciences Corporation. 2012. Retrieved 28 February 2012. Spacecraft mass-to-orbit of up to 580 kg to LEO (28.5 deg, 185 km)
  99. Krebs, Gunter. "Minotaur-1 (OSP-SLV)". Gunter's Space Page. Retrieved 28 August 2017.
  100. "Minotaur IV – Fact sheet" (PDF). Orbital Sciences Corporation. 2010. BR06005d. Archived from the original (PDF) on 8 October 2010. Retrieved 4 March 2009.
  101. Krebs, Gunter. "Minotaur-3/-4/-5/-6 (OSP-2 Peacekeeper SLV)". Gunter's Space Page. Retrieved 28 August 2017.
  102. "Taurus". Orbital Sciences Corporation. 2012. Archived from the original on 22 July 2012.
  103. "Minotaur-C, Ground-Launched Space Launch Vehicle" (PDF). Orbital Sciences Corporation. 2014. FS003_02_2998. Archived from the original (PDF) on 14 July 2014.
  104. Krebs, Gunter. "Taurus / Minotaur-C". Gunter's Space Page. Retrieved 30 November 2017.
  105. Henry, Caleb (28 November 2018). "PLD Space, after ESA input, doubles lift capacity of smallsat launcher". SpaceNews. Retrieved 29 November 2018.
  106. Foust, Jeff (8 March 2017). "Eutelsat first customer for Blue Origin's New Glenn". SpaceNews. Retrieved 8 March 2017.
  107. "Blue Origin resets schedule: First crew to space in 2019, first orbital launch in 2021". Geekwire. 10 October 2018. Retrieved 9 November 2018.
  108. Lin, Jeffrey; Singer, P.W. (18 December 2017). "China could become a major space power by 2050". Popular Science. Retrieved 4 September 2018.
  109. "Korea Space Launch Vehicle (Nuri)". Korea Aerospace Research Institute. Retrieved 1 December 2019.
  110. Schumann, Thomas [@Tschnn] (23 October 2019). "Performance of the Omega rocket by @northropgrumman #IAC2019" (Tweet). Retrieved 17 March 2020 via Twitter.
  111. "OmegA – Intermediate/Heavy Class Space Launch Vehicle" (PDF). Northrop Grumman. 2018. DS18010_D22819. Archived from the original (PDF) on 5 August 2019. Retrieved 7 June 2018.
  112. Goh, Deyana (5 July 2018). "Chinese startup One Space successfully tests first stage engine for orbital rocket". Spacetech Asia. Retrieved 16 August 2018.
  113. Krebs, Gunter. "OS-M (Chongqing SQX)". Gunter's Space Page. Retrieved 15 April 2019.
  114. Jones, Andrew (17 May 2018). "Chinese company OneSpace sends OS-X rocket to 40 km in maiden flight". GBTimes. Retrieved 17 May 2018.
  115. Krebs, Gunter. "Pegasus". Gunter's Space Page. Retrieved 11 October 2019.
  116. Clark, Stephen (11 October 2019). "NASA Awards Launch for Orbital's Pegasus Rocket". Spaceflight Now. Retrieved 11 October 2019.
  117. "About us". Orbex. Retrieved 4 September 2018. Orbex can accommodate a range of payload capacities between 100kg-220kg, to altitudes of between 200km-1250km.
  118. Foust, Jeff (18 July 2018). "Orbex stakes claim to European smallsat launch market". SpaceNews. Retrieved 4 September 2018.
  119. "Proton Launch System Mission Planner's Guide Section 2 LV Performance" (PDF). International Launch Services. Retrieved 2016-04-07.
  120. "Proton Launch System Mission Planner's Guide, LKEB-9812-1990" (PDF). International Launch Services. p. 2. Archived from the original on 27 October 2007. Retrieved 12 November 2007. LEO i = 51.6°, H = 200 km circular ... GTO (1800 m/s from GSO) i = 31.0°, Hp = 2100 km, Ha = 35,786 km
  121. Krebs, Gunter. "Proton-M Blok-DM-2". Gunter's Space Page. Retrieved 9 October 2017.
  122. Krebs, Gunter. "Proton-M Blok-DM-03". Gunter's Space Page. Retrieved 10 August 2019.
  123. Krebs, Gunter. "Proton-K and -M Briz-M". Gunter's Space Page. Retrieved 12 October 2019.
  124. Krebs, Gunter. "PSLV". Gunter's Space Page. Retrieved 1 December 2019.
  125. Arunan, S.; Satish, R. (25 September 2015). "Mars Orbiter Mission spacecraft and its challenges". Current Science. 109 (6): 1061–1069. doi:10.18520/v109/i6/1061-1069.
  126. "ABL Space Systems".
  127. Krebs, Gunter. "Safir". Gunter's Space Pages. Retrieved 2 March 2019.
  128. "Shavit". Space Launch Report. 13 September 2016. Retrieved 4 September 2018. LEO Payload 200 x 1,600 km x 143 deg – Shavit: 160 kg – Shavit-1: 225 kg – Shavit-2: 300 kg
  129. Krebs, Gunter. "Shavit". Gunter's Space Pages. Retrieved 20 December 2016.
  130. Krebs, Gunter. "Simorgh (Safir-2)". Gunter's Space Page. Retrieved 15 January 2019.
  131. "Soyuz-2.1 Launch Vehicle". Progress Rocket Space Centre. Retrieved 2 February 2018.
  132. Krebs, Gunter. "Soyuz-2-1a (14A14)". Gunter's Space Page. Retrieved 10 August 2019.
  133. Krebs, Gunter. "Soyuz with Fregat upper stage". Gunter's Space Page. Retrieved 26 September 2019.
  134. Krebs, Gunter. "Soyuz with Ikar and Volga upper stages". Gunter's Space Page. Retrieved 20 December 2016.
  135. "Soyuz Rocket". Space Launch Report. Retrieved 17 May 2015.
  136. Krebs, Gunter. "Soyuz-2-1b". Gunter's Space Page. Retrieved 27 September 2019.
  137. "Soyuz-ST". Encyclopedia Astronautica. Archived from the original on 24 August 2015. Retrieved 17 May 2015.
  138. "Soyuz-ST Launch Vehicle". Progress Rocket Space Centre. Retrieved 17 May 2015.
  139. "Soyuz 2 Launch Vehicle". Russian Space Web. Retrieved 19 May 2015.
  140. "Soyuz overview". Arianespace. Retrieved 7 June 2018.
  141. Krebs, Gunter. "Soyuz core only". Gunter's Space Page. Retrieved 10 August 2019.
  142. Zak, Anatoly (7 August 2017). "Preliminary design for Soyuz-5 races to completion". Russian Space Web. Retrieved 2 September 2018.
  143. Zak, Anatoly (13 November 2017). "Russia's "new" next manned rocket detailed". Russian Space Web. Retrieved 2 September 2018.
  144. "Russia to launch super-heavy rocket to Moon in 2032–2035". TASS. 23 January 2018. Retrieved 6 June 2018.
  145. Harbaugh, Jennifer (9 July 2018). "The Great Escape: SLS Provides Power for Missions to the Moon". NASA. Retrieved 4 September 2018.
  146. Wehner, Mike (18 July 2019). "NASA Quietly Pushes Back Its SLS Launch Estimates to 2021". BGR. Retrieved 19 August 2019.
  147. "Space Launch System" (PDF). NASA Facts. NASA. 11 October 2017. FS-2017-09-92-MSFC. Retrieved 4 September 2018.
  148. Sloss, Philip (11 September 2018). "NASA updates Lunar Gateway plans". NASASpaceFlight.com. Retrieved 17 September 2018.
  149. Creech, Stephen (April 2014). "NASA's Space Launch System: A Capability for Deep Space Exploration" (PDF). NASA. p. 2. Retrieved 4 September 2018.
  150. Krebs, Gunter. "SS-520". Gunter's Space Page. Retrieved 5 November 2017.
  151. Graham, William (3 February 2018). "Japanese sounding rocket claims record-breaking orbital launch". NASASpaceFlight. Retrieved 3 February 2018.
  152. "Experimental Launch of World's Smallest Orbital Space Rocket ends in Failure". Spaceflight 101. 14 January 2017. Retrieved 5 November 2017.
  153. Krebs, Gunter. "SSLV". Gunter's Space Page. Retrieved 16 August 2018.
  154. Pietrobon, Steven (15 August 2018). "Indian Launch Manifest". Retrieved 16 August 2018.
  155. "Starship". SpaceX. Archived from the original on 30 September 2019. Retrieved 1 October 2019.
  156. "Starship Users Guide - starship_users_guide_v1.pdf" (PDF). spacex.com. Retrieved 1 April 2020.
  157. "UNITED STATES COMMERCIAL LAUNCH MANIFEST (7 Jan 2020)".
  158. "UNITED STATES COMMERCIAL LAUNCH MANIFEST (7 Jan 2020)".
  159. "Terran". Relativity Space. Retrieved 5 October 2019.
  160. Clark, Stephen (3 October 2019). "Relativity scores $140 million funding round for smallsat launcher". Spaceflight Now. Retrieved 5 October 2019.
  161. "Kwangmyongsong 3, 3-2 (KMS 3, 3-2)".
  162. Krebs, Gunter. "Unha ("Taepodong-2")". Gunter's Space Page. Retrieved 20 December 2016.
  163. "Vega overview". Arianespace. Retrieved 7 June 2018.
  164. "Vega User's Manual" (PDF). Issue 4. Arianespace. April 2014. pp. 2–10. Retrieved 4 September 2018.
  165. Krebs, Gunter. "Vega". Gunter's Space Page. Retrieved 15 July 2019.
  166. "Vega C: Launcher". Avio. Retrieved 7 June 2018.
  167. Henry, Caleb (11 March 2019). "Vega C debut slips to 2020". SpaceNews. Retrieved 10 August 2019.
  168. "Vega E: M10 motor / Mira". Avio. Retrieved 7 June 2018.
  169. "Vega E". Avio. Retrieved 7 June 2018.
  170. "Launch Vehicle". Skyroot Aerospace. 2019-01-10. Retrieved 2019-04-21.
  171. "Skyroot Aerospace". Skyroot Aerospace. Retrieved 2019-04-21.
  172. Sukumar, C. R.; Krishnan, Raghu (2019-04-17). "With a simpler rocket, Skyroot is eyeing the space". The Economic Times. Retrieved 2019-04-21.
  173. "Rocket Rundown – A Fleet Overview" (PDF). ULA. November 2019. Retrieved April 14, 2020.
  174. Foust, Jeff (25 October 2018). "ULA now planning first launch of Vulcan in 2021". SpaceNews. Retrieved 25 October 2018.
  175. DeRoy, Rich S.; Reed, John G. (February 2016). "Vulcan, ACES and beyond: providing launch services for tomorrow's spacecraft" (PDF). Advances in the Astronautical Sciences. Univelt. 157: 228. AAS 16-052. Retrieved 28 September 2018.
  176. Everington, Keoni (25 January 2018). "Taiwan's upgraded 'Cloud Peak' missiles can reach Beijing". Taiwan News. Retrieved 10 February 2018.
  177. Zak, Anatoly (19 February 2019). "The Yenisei super-heavy rocket". RussianSpaceWeb. Retrieved 20 February 2019.
  178. Zak, Anatoly (24 November 2017). "Russia charts new roadmap to super-heavy rocket". Russian Space Web. Retrieved 6 June 2018.
  179. Zak, Anatoly (8 February 2019). "Russia Is Now Working on a Super Heavy Rocket of Its Own". Popular Mechanics. Retrieved 20 February 2019.
  180. Werner, Debra (9 August 2018). "Japan's Interstellar Technologies goes full throttle toward small orbital rocket". SpaceNews. Retrieved 11 August 2018.
  181. Koizumi, Masumi (15 May 2019). "Japanese rocket pioneer Takafumi Horie says his firm Interstellar Technologies could soon take on SpaceX". The Japan Times. Retrieved 16 September 2019.
  182. Jones, Andrew (2 August 2018). "Landspace of China to launch first rocket in Q4 2018". SpaceNews. Retrieved 16 August 2018.
  183. Barbosa, Rui C. (27 October 2018). "Chinese commercial provider LandSpace launches Weilai-1 on a Zhuque-1 rockets – fails to make orbit". NASASpaceFlight.com. Retrieved 27 October 2018.
  184. Jones, Andrew (10 July 2018). "Commercial Chinese companies set sights on methalox rockets, first orbital launches". SpaceNews. Retrieved 16 August 2018.
  185. Curcio, Blaine; Lan, Tianyi (18 July 2018). "LandSpace Unveils Highly Ambitious New Rocket". Via Satellite. Retrieved 15 August 2018.
  186. Krebs, Gunter. "Ariane-1, -2, -3, -4". Gunter's Space Page. Retrieved 2 August 2011.
  187. "Ariane 5". andegraf.com. Retrieved April 27, 2018.
  188. "Final launch of Ariane 5 GS completes busy year / Launchers / Our Activities / ESA". European Space Agency. 2009-12-19. Retrieved 2013-11-04.
  189. "Welcome To ISRO :: Launch Vehicles". ISRO. Retrieved 2013-11-04.
  190. Krebs, Gunter. "SLV-3 / ASLV". Gunter's Space Page. Retrieved 18 December 2016.
  191. "Athena-1 (LLV-1 / LMLV-1)".
  192. "Athena-1". Astronautix.com. Archived from the original on 2013-10-20. Retrieved 2013-11-04.
  193. NASA, Athena Mission Planner’s Guide 26 August 2012
  194. "Athena-2". Astronautix.com. Archived from the original on 2013-11-08. Retrieved 2013-11-04.
  195. "Athena-2 (LLV-2 / LMLV-2)".
  196. "Atlas Centaur LV-3C Development".
  197. "Atlas Centaur".
  198. Krebs, Gunter. "Atlas Centaur". Gunter's Space Page. Retrieved 1 August 2011.
  199. astronautix.com, Atlas H
  200. astronautix.com, Atlas IIIB Archived 2002-05-01 at the Wayback Machine
  201. Encyclopedia Astronautica, Black Arrow Archived 2007-12-06 at the Wayback Machine
  202. astronautix.com, Titan III Archived 2014-12-25 at the Wayback Machine
  203. "WMO OSCAR – Satellite: NOAA-3".
  204. "NASA – NSSDCA – Spacecraft – Details".
  205. Krebs, Gunter. "Delta". Gunter's Space Page. Retrieved 16 September 2018.
  206. Wade, Mark. "Delta 0300". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 2 August 2011.
  207. Wade, Mark. "Delta 0900". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 2 August 2011.
  208. "GEOS 3".
  209. "1972 – 2616 – Flight Archive".
  210. "OSO 8".
  211. "Explorer: RAE B".
  212. "Delta-1914".
  213. "NASA – NSSDCA – Spacecraft – Details".
  214. "Skynet 2A, 2B".
  215. Wade, Mark. "Delta 2913". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 2 August 2011.
  216. "Explorer: DE 1, 2".
  217. Wade, Mark. "Delta 4000". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 2 August 2011.
  218. Wade, Mark. "Delta 5000". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 2 August 2011.
  219. "Aura / Signe 3 (D 2B)".
  220. Space Skyrocket, Diamant, retrieved 19 December 2015
  221. Krebs, Gunter. "Dnepr". Gunter's Space Page. Retrieved 18 December 2016.
  222. Clark, Stephen (30 December 2016). "Iridium satellites closed up for launch on Falcon 9 rocket". Spaceflight Now. Retrieved 30 December 2016. Russian officials have said they plan to discontinue Dnepr launches.
  223. "S.P.Korolev RSC Energia – LAUNCHERS". Energia.
  224. Wade, Mark. "Energia". Encyclopedia Astronautica. Archived from the original on 11 October 2011. Retrieved 9 August 2010.
  225. Krebs, Gunter. "Falcon-1". Gunter's Space Page. Retrieved 18 December 2016.
  226. "Falcon 9 Overview". SpaceX. 2011. Archived from the original on 2012-01-18. Retrieved 2011-12-01.
  227. Krebs, Gunter. "Falcon-9". Gunter's Space Page. Retrieved 24 May 2018.
  228. "Falcon 9". SpaceX. 2012-11-16. Archived from the original on 5 August 2014.
  229. Feng Bao 1, part of CZ family
  230. Krebs, Gunter. "FB-1 (Feng Bao-1)". Gunter's Space Page. Retrieved 17 August 2018.
  231. Krebs, Gunter. "GSLV". Gunter's Space Page. Retrieved 18 December 2016.
  232. "JERS (Fuyo)".
  233. astronautix.com, H-2 Archived 2008-07-06 at the Wayback Machine
  234. Krebs, Gunter. "H-2". Gunter's Space Page. Retrieved 1 August 2011.
  235. astronautix.com H-IIA 2024 Archived 2011-10-11 at the Wayback Machine
  236. Krebs, Gunter. "H-2B". Gunter's Space Page. Retrieved 24 September 2019.
  237. "NISSAN HERITAGE COLLECTION online【その他】プリンス自動車工業小史". Nissan Motors. Retrieved 8 March 2011.
  238. "JAXA – J-I Launch Vehicle".
  239. astronautix.com Kaituozhe-1, also called KY-1 Archived 2008-05-12 at the Wayback Machine
  240. "Cosmos-1, 3, 3M and 3MU – SL-8 – C-1".
  241. "Kosmos-3M (11K65M)". Archived from the original on 2013-06-02. Retrieved 2015-12-21.
  242. "Satellite Launch Vehicles". Institute of Space and Astronautical Science (ISAS). Retrieved 4 March 2011.
  243. astronautix.com, Long March 1, also called CZ-1
  244. Krebs, Gunter. "CZ-1 (Chang Zheng-1)". Gunter's Space Page. Retrieved 12 February 2014.
  245. astronautix.com, Long March 1D (CZ-1D) Archived 2002-05-25 at the Wayback Machine
  246. astronautix.com Long March 2A – CZ-2A Archived 2008-05-16 at the Wayback Machine
  247. astronautix.com, Encyclopedia Astronautica, Molniya 8K78M Archived 2012-05-08 at the Wayback Machine
  248. Krebs, Gunter. "Molniya (8K78)". Gunter's Space Page. Retrieved 18 December 2016.
  249. "US-K (73D6)".
  250. Krebs, Gunter. "Molniya and Soyuz with upper stages". Gunter's Space Page. Retrieved 18 December 2016.
  251. "Complex N1-L3". Energia.ru. Retrieved 2013-11-04.
  252. "L3". Astronautix.com. Archived from the original on 2012-12-01. Retrieved 2013-11-04.
  253. "RSC "Energia" – History". Energia.ru. 2011-04-12. Retrieved 2013-11-04.
  254. Wade, Mark. "N1". Encyclopedia Astronautica. Retrieved 9 August 2010.
  255. astronautix.com, N-I- Delta Archived 2008-07-24 at the Wayback Machine
  256. astronautix.com, Encyclopedia Astronautica, N-2 Archived 2013-11-08 at the Wayback Machine
  257. "STSAT 2C".
  258. LePage, Andrew J. (July 1998). "NOTSNIK: The Navy's Secret Satellite Program". Spaceviews. Archived from the original on May 21, 2003. Retrieved 2009-01-17.
  259. Korea, By Christoph Bluth,
  260. Encyclopedia Astronautica, Proton-K
  261. "Launch Vehicles".
  262. "Proton". Astronautix.com. Retrieved 2013-11-04.
  263. "Outcome Budget 2016–2017" (PDF). Government of India, Department of Space. 2016. Retrieved 15 September 2018. Currently, two versions of PSLV are operational, namely PSLV-XL (with six extended version of Strap-on motors) and the PSLV Core-alone (without Strap-on motors).
  264. Krebs, Gunter. "Rokot (Rockot)". Gunter's Space Page. Retrieved 31 August 2019.
  265. astronautix.com, Saturn I Archived 2010-12-07 at the Wayback Machine
  266. "Saturn-1 & Saturn-1B". Space.skyrocket.de. Retrieved 2013-11-04.
  267. Encyclopedia Astronautica, Saturn IB Archived 2011-05-14 at the Wayback Machine
  268. Bilstein, Roger E. "Appendix C: Saturn Family/Mission Data". Stages to Saturn A Technological History of the Apollo/Saturn Launch Vehicles. NASA History Office. Retrieved 7 April 2011.
  269. Alternatives for Future U.S. Space-Launch Capabilities (PDF), The Congress of the United States. Congressional Budget Office, October 2006, pp. X, 1, 4, 9
  270. Thomas P. Stafford (1991), America at the Threshold – Report of the Synthesis Group on America's Space Exploration Initiative, p. 31
  271. "Rocket and Space Technology". Braeunig.us. Retrieved 2013-11-04.
  272. Alan Lawrie and Robert Godwin, Saturn, 2005 (paperback, Apogee Books Space Series, 2010), ISBN 1-894959-19-1
  273. John Duncan, Saturn V Flight History Archived 2011-08-05 at the Wayback Machine (1999), web page (accessed 20 August 2010)
  274. "NASA – Scout Launch Vehicle Program".
  275. "Vysota / Volna / Shtil".
  276. "Vysota / Volna / Shtil". Retrieved 2014-12-23.
  277. "SLV-3". Retrieved 13 February 2014.
  278. Krebs, Gunter. "Soyuz (11A511)". Gunter's Space Page. Retrieved 20 December 2016.
  279. "Soyuz-FG Launch Vehicle". Progress Rocket Space Centre. Retrieved 16 May 2015.
  280. Krebs, Gunter. "Soyuz-FG (11A511U-FG)". Gunter's Space Page. Retrieved 25 September 2019.
  281. Krebs, Gunter. "Soyuz-L (11A511L)". Gunter's Space Page. Retrieved 20 December 2016.
  282. Krebs, Gunter. "Soyuz-M (11A511M)". Gunter's Space Page. Retrieved 20 December 2016.
  283. "Soyuz-U Launch Vehicle". JSC "RCC" Progress. Retrieved 16 May 2015.
  284. Krebs, Gunter. "Soyuz-U (11A511U)". Gunter's Space Page. Retrieved 20 December 2016.
  285. Krebs, Gunter. "Soyuz-U2 (11A511U2)". Gunter's Space Page. Retrieved 20 December 2016.
  286. Krebs, Gunter. "Shuttle (STS)". Gunter's Space Page. Retrieved 14 July 2014.
  287. "SPACE TRANSPORTATION SYSTEM PAYLOADS". Kennedy Space Center. 2000. Retrieved 14 July 2014.
  288. "NASA – Space Shuttle". NASA. Retrieved 2012-07-25.
  289. "Sputnik 2 (PS-2 #1)".
  290. "EROS B".
  291. "Start-1".
  292. "Strela launcher".
  293. "Strela". Gunter's Space Page. Retrieved 23 Dec 2014.
  294. astronautix.com, Titan II GLV Archived 2016-02-28 at the Wayback Machine
  295. astronautix.com, Titan 23G Archived 2016-03-04 at the Wayback Machine
  296. Encyclopedia Astronautica, Titan 3A Archived 2008-03-07 at the Wayback Machine
  297. Encyclopedia Astronautica, Titan 3B Archived 2012-10-25 at the Wayback Machine
  298. astronautix.com, Titan IIIC Archived 2014-12-25 at the Wayback Machine
  299. astronautix.com, Titan IIID Archived 2016-03-04 at the Wayback Machine
  300. astronautix.com, Titan IIIE Archived 2015-12-02 at the Wayback Machine
  301. astronautix.com, Titan 34D Archived 2008-06-30 at the Wayback Machine
  302. "Titan-4". Gunter's Space Page. Retrieved 14 July 2014.
  303. "Titan-4". Space.skyrocket.de. Retrieved 2013-11-04.
  304. "Fact Sheet – TITAN IVB". United States Air Force. Retrieved 2007-11-12.
  305. astronautix.com, Tsyklon-2A Archived 2013-05-22 at the Wayback Machine
  306. "Tsiklon-2A (11K67)". Space.skyrocket.de. Retrieved 2013-11-04.
  307. astronautix.com, Tsyklon-2 Archived 2013-05-22 at the Wayback Machine
  308. "Tsiklon-2 (11K69)". Space.skyrocket.de. Retrieved 2013-11-04.
  309. nasaspaceflight.com, Tsyklon-3
  310. "Tsiklon-3 (11K68)". Space.skyrocket.de. Retrieved 2013-11-04.
  311. astronautix.com, vanguard Archived 2002-05-06 at the Wayback Machine
  312. "Vector Space Systems Will Launch Microsatellite Rockets from Florida". Retrieved 28 March 2017.
  313. "VLS".
  314. "IRDT 1, 2, 2R".
  315. Handbook of Space Engineering, Archaeology, and Heritage by Ann Darrin, Beth L. O'Leary, page 116
  316. "NASA – NSSDCA – Spacecraft – Details".
  317. "Spacecraft – Vostok".
  318. "Meteor-2 (11F632)".
  319. astronautix.com, Soyuz/Vostok Archived 2010-01-07 at the Wayback Machine
  320. Ed Kyle. "Zenit Data Sheet". Spacelaunchreport.com. Retrieved 2013-11-04.
  321. Krebs, Gunter. "Zenit-2". Gunter's Space Pages. Retrieved 20 December 2016.
  322. "Zenit launch vehicle". Russianspaceweb.com. Retrieved 2013-11-04.
  323. "Elektro-L 1, 2, 3".
  324. Krebs, Gunter. "Zenit-3". Gunter's Space Page. Retrieved 28 December 2017.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.