Histamine N-methyltransferase

HNMT
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesHNMT, HMT, HNMT-S1, HNMT-S2, MRT51, histamine N-methyltransferase, Histamine N-methyltransferase
External IDsMGI: 2153181 HomoloGene: 5032 GeneCards: HNMT
Gene location (Human)
Chr.Chromosome 2 (human)[1]
Band2q22.1Start137,964,020 bp[1]
End138,016,364 bp[1]
Orthologs
SpeciesHumanMouse
Entrez

3176

140483

Ensembl

ENSG00000150540

ENSMUSG00000026986

UniProt

P50135

Q91VF2

RefSeq (mRNA)

NM_001024074
NM_001024075
NM_006895

NM_080462

RefSeq (protein)

NP_001019245
NP_001019246
NP_008826

NP_536710

Location (UCSC)Chr 2: 137.96 – 138.02 MbChr 2: 24 – 24.05 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse
histamine N-methyltransferase
Identifiers
EC number 2.1.1.8
CAS number 9029-80-5
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO

Histamine N-methyltransferase (HMT, HNMT) is an enzyme that in humans is encoded by the HNMT gene.[5]

Histamine N-methyltransferase is one of two enzymes involved in the metabolism of histamine, the other being diamine oxidase. Histamine N-methyltransferase catalyzes the methylation of histamine in the presence of S-adenosylmethionine (SAM) forming N-methylhistamine. HMT is present in most body tissues but is not present in serum.[6] Histamine N-methyltransferase is encoded by a single gene which has been mapped to chromosome 2.

Function

In mammals, histamine is metabolized by two major pathways: N(tau)-methylation via histamine N-methyltransferase and oxidative deamination via diamine oxidase. This gene encodes the first enzyme which is found in the cytosol and uses S-adenosyl-L-methionine as the methyl donor. In the mammalian brain, the neurotransmitter activity of histamine is controlled by N(tau)-methylation as diamine oxidase is not found in the central nervous system. A common genetic polymorphism affects the activity levels of this gene product in red blood cells.[5]

See also

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000150540 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000026986 - Ensembl, May 2017
  3. "Human PubMed Reference:".
  4. "Mouse PubMed Reference:".
  5. 1 2 "Entrez Gene: Histamine N-methyltransferase".
  6. Brown DD, Tomchick R, Axelrod J (November 1959). "The distribution and properties of a histamine-methylating enzyme" (pdf). J. Biol. Chem. 234 (11): 2948–50. PMID 13804910.

Further reading

  • Wang L, Thomae B, Eckloff B, Wieben E, Weinshilboum R (August 2002). "Human histamine N-methyltransferase pharmacogenetics: gene resequencing, promoter characterization, and functional studies of a common 5'-flanking region single nucleotide polymorphism (SNP)". Biochem. Pharmacol. 64 (4): 699–710. doi:10.1016/s0006-2952(02)01223-6. PMID 12167489.
  • García-Martín E, Martínez C, Benito-León J, Calleja P, Díaz-Sánchez M, Pisa D, Alonso-Navarro H, Ayuso-Peralta L, Torrecilla D, Agúndez JA, Jiménez-Jiménez FJ (February 2010). "Histamine-N-methyl transferase polymorphism and risk for multiple sclerosis". Eur. J. Neurol. 17 (2): 335–8. doi:10.1111/j.1468-1331.2009.02720.x. PMID 19538200.
  • Ross CJ, Katzov-Eckert H, Dubé MP, Brooks B, Rassekh SR, Barhdadi A, Feroz-Zada Y, Visscher H, Brown AM, Rieder MJ, Rogers PC, Phillips MS, Carleton BC, Hayden MR (December 2009). "Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy". Nat. Genet. 41 (12): 1345–9. doi:10.1038/ng.478. PMID 19898482.
  • Seip RL, Volek JS, Windemuth A, Kocherla M, Fernandez ML, Kraemer WJ, Ruaño G (2008). "Physiogenomic comparison of human fat loss in response to diets restrictive of carbohydrate or fat". Nutr Metab (Lond). 5: 4. doi:10.1186/1743-7075-5-4. PMC 2270845. PMID 18254975.
  • Chen GL, Zhu B, Nie WP, Xu ZH, Tan ZR, Zhou G, Liu J, Wang W, Zhou HH (September 2004). "Single nucleotide polymorphisms and haplotypes of histamine N-methyltransferase in patients with gastric ulcer". Inflamm. Res. 53 (9): 484–8. doi:10.1007/s00011-004-1290-0. PMID 15551002.
  • Szczepankiewicz A, Bręborowicz A, Sobkowiak P, Popiel A (2010). "Polymorphisms of two histamine-metabolizing enzymes genes and childhood allergic asthma: a case control study". Clin Mol Allergy. 8: 14. doi:10.1186/1476-7961-8-14. PMC 2990726. PMID 21040557.
  • Stevenson J, Sonuga-Barke E, McCann D, Grimshaw K, Parker KM, Rose-Zerilli MJ, Holloway JW, Warner JO (September 2010). "The role of histamine degradation gene polymorphisms in moderating the effects of food additives on children's ADHD symptoms". Am J Psychiatry. 167 (9): 1108–15. doi:10.1176/appi.ajp.2010.09101529. PMID 20551163.
  • Aksoy S, Raftogianis R, Weinshilboum R (February 1996). "Human histamine N-methyltransferase gene: structural characterization and chromosomal location". Biochem. Biophys. Res. Commun. 219 (2): 548–54. doi:10.1006/bbrc.1996.0271. PMID 8605025.
  • Horton JR, Sawada K, Nishibori M, Zhang X, Cheng X (September 2001). "Two polymorphic forms of human histamine methyltransferase: structural, thermal, and kinetic comparisons". Structure. 9 (9): 837–49. doi:10.1016/S0969-2126(01)00643-8. PMC 4030376. PMID 11566133.

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.