Cultured meat

Cultured meat, also called clean meat, synthetic meat or in vitro meat, is meat produced by in vitro cultivation of animal cells, instead of from slaughtered animals.[1] It is a form of cellular agriculture.

Cultured meat is produced using many of the same tissue engineering techniques traditionally used in regenerative medicine.[2] The concept of cultured meat was popularized by Jason Matheny in the early 2000s after co-authoring a seminal paper[3] on cultured meat production and creating New Harvest, the world’s first non-profit organization dedicated to supporting in vitro meat research.[4]

In 2013, Mark Post, professor at Maastricht University, was the first to showcase a proof-of-concept for in-vitro lab grown meat by creating the first lab-grown burger patty. Since then, several cultured meat prototypes have gained media attention: however, because of limited dedicated research activities, cultured meat has not yet been commercialized.[5] In addition, it has yet to be seen whether consumers will accept cultured meat as meat.[6]

Nomenclature

Besides cultured meat and in vitro meat, the terms vat-grown[7] and lab-grown meat[8] have all been used by various outlets to describe the product.

Clean meat is an alternative term that is preferred by some journalists, advocates, and organizations that support the technology. According to the Good Food Institute,[9] the name better reflects the production and benefits of the meat[10][11] and surpassed "cultured" and "in vitro" in media mentions as well as Google searches.[12]

History

20th century

The theoretical possibility of growing meat in an industrial setting has long captured the public imagination. Winston Churchill suggested in 1931: "We shall escape the absurdity of growing a whole chicken in order to eat the breast or wing, by growing these parts separately under a suitable medium."[13]

In vitro cultivation of muscular fibers was performed as early as 1971 by Russell Ross. Indeed, the abstract was "Smooth muscle derived from the inner media and intima of immature guinea pig aorta were grown for up to 8 weeks in cell culture. The cells maintained the morphology of smooth muscle at all phases of their growth in culture. After growing to confluency, they grew in multiple overlapping layers. By week 4 in culture, microfibrils (110 A) appeared within the spaces between the layers of cells. Basement membrane-like material also appeared adjacent to the cells. Analysis of the microfibrils showed that they have an amino acid composition similar to that of the microfibrillar protein of the intact elastic fiber. These investigations coupled with the radioautographic observations of the ability of aortic smooth muscle to synthesize and secrete extracellular proteins demonstrate that this cell is a connective tissue synthetic cell."[14] The culturing of stem cells from animals has been possible since the 1990s, including the production of small quantities of tissue which could, in principle be cooked and eaten. NASA has been conducting experiments since 2001, producing cultured meat from turkey cells.[15][16] The first edible sample was produced by the NSR/Touro Applied BioScience Research Consortium in 2002: goldfish cells grown to resemble fish fillets.[17][18][19]

In 1998 Jon F. Vein of the United States filed for, and ultimately secured, a patent (US 6,835,390 B1) for the production of tissue engineered meat for human consumption, wherein muscle and fat cells would be grown in an integrated fashion to create food products such as beef, poultry and fish.

Early 21st century

In 2001, dermatologist Wiete Westerhof from the University of Amsterdam, medical doctor Willem van Eelen, and businessman Willem van Kooten announced that they had filed for a worldwide patent on a process to produce cultured meat.[20] In the process, a matrix of collagen is seeded with muscle cells, which are then bathed in a nutritious solution and induced to divide.[21] Scientists in Amsterdam study the culture medium, while the University of Utrecht studies the proliferation of muscle cells, and the Eindhoven University of Technology is researching bioreactors.[21]

In 2003, Oron Catts and Ionat Zurr of the Tissue Culture and Art Project and Harvard Medical School exhibited in Nantes a "steak" a few centimetres wide, grown from frog stem cells, which was cooked and eaten.[22]

The first peer-reviewed journal article published on the subject of laboratory-grown meat appeared in a 2005 issue of Tissue Engineering.[23]

In 2008, PETA offered a $1 million prize to the first company to bring lab-grown chicken meat to consumers by 2012.[24] The Dutch government has put US$4 million into experiments regarding cultured meat.[15] The In Vitro Meat Consortium, a group formed by international researchers interested in the technology, held the first international conference on the production of cultured meat, hosted by the Food Research Institute of Norway in April 2008, to discuss commercial possibilities.[17] Time magazine declared cultured meat production to be one of the 50 breakthrough ideas of 2009.[25] In November 2009, scientists from the Netherlands announced they had managed to grow meat in the laboratory using the cells from a live pig.[26]

As of 2012, 30 laboratories from around the world have announced that they are working on cultured meat research.[27]

The first cultured beef burger patty, created by Dr. Mark Post at Maastricht University, was eaten at a demonstration for the press in London in August 2013.[28] It was made from over 20,000 thin strands of muscle tissue.[29] This burger cost Dr. Post over $300,000 to make and over 2 years to produce.[30]Two other companies have also begun to culture meat; Memphis Meats in the US and SuperMeat in Israel.[31]

As of February of 2017, a recent report has shown that the price of these cultured burgers has dropped dramatically. Going from roughly over $300,000 to $11.36 in just 3 and a half years.[32] This cost is now only 9-10 times more expensive per pound than standard ground beef.[33]

First public trial

Hanni Rützler tastes the world's first cultured hamburger, 5 August 2013.

On August 5th 2013, the world's first lab-grown burger was cooked and eaten at a news conference in London. Scientists from Maastricht University in the Netherlands, led by professor Mark Post, had taken stem cells from a cow and grown them into strips of muscle which they then combined to make a burger. The burger was cooked by chef Richard McGeown of Couch's Great House Restaurant, Polperro, Cornwall, and tasted by critics Hanni Rützler, a food researcher from the Future Food Studio and Josh Schonwald.[28] Rützler stated,

There is really a bite to it, there is quite some flavour with the browning. I know there is no fat in it so I didn't really know how juicy it would be, but there is quite some intense taste; it's close to meat, it's not that juicy, but the consistency is perfect. This is meat to me... It's really something to bite on and I think the look is quite similar.[34]

Rützler added that even in a blind trial she would have taken the product for meat rather than a soya copy.[34]

Tissue for the London demonstration was cultivated in May 2013, using about 20,000 thin strips of cultured muscle tissue. Funding of around €250,000 came from an anonymous donor later revealed to be Sergey Brin.[8] Post remarked that "there’s no reason why it can’t be cheaper...If we can reduce the global herd a millionfold, then I’m happy".[35]

Further progress from startups

Since the first public trial, several startups have made advances in the field. Mosa Meat co-founded by Mark Post continuous research with a focus on cultured beef. The company was able to significantly lower the costs of production. [36]

Memphis Meats, a Silicon Valley startup founded by a cardiologist, launched a video in February 2016 showcasing its cultured beef meatball.[36][37][38] In March 2017, it showcased chicken tenders and duck a l’orange, the first cultured poultry-based foods shown to the public.[39][40][41]

An Israeli company, SuperMeat, ran a viral crowdfunding campaign in 2016 for its work on cultured chicken.[42][43][44][45][46][47]

Finless Foods, a San Francisco based company aimed at cultured fish, was founded in June 2016. In March 2017 it commenced laboratory operations and progressed quickly. Director Mike Selden said in July 2017 to expect bringing cultured fish products on the market within two years (by the end of 2019).[48]

In March 2018, JUST, Inc. (in 2011 founded as Hampton Creek in San Francisco) claimed to be able to present a consumer product from cultured meat by the end of 2018. According to CEO Josh Tetrick the technology is already there, and now it is merely a matter of applying it. Just has about 130 employees and a research department of 55 scientists, where lab meat from poultry, pork and beef is being developed. They would have already solved the problem of feeding the stemcells with only plant resources. Just receives sponsoring from Chinese billionaire Li Ka-shing, Yahoo! cofounder Jerry Yang and according to Tetrick also from Heineken International amongst others.[49]

The Dutch startup Meatable, consisting of Krijn de Nood, Daan Luining, Ruud Out, Roger Pederson, Mark Kotter and Gordana Apic among others, reported in September 2018 it had succeeded in growing meat using pluripotent stem cells from animals' umbilical cords. Although such cells are reportedly difficult to work with, Meatable claimed to be able to direct them to behave using their proprietary technique in order to become muscle cells or fat cells as needed. The major advantage is that this technique bypasses fetal bovine serum, meaning that no animal has to be killed in order to produce meat.[50]

Production

The first cultured hamburger, ready to be fried on 5 August 2013.

There are three stages in the production of cultured meat.[17][51][52]

Starter cells

The initial stage of growing cultured meat is to collect cells that have a rapid rate of proliferation. Such cells include embryonic stem cells, adult stem cells, myosatellite cells, or myoblasts. Stem cells proliferate the quickest, but have not yet begun development towards a specific kind of cell, which creates the challenge of splitting the cells and directing them to grow a certain way. Fully developed muscle cells are ideal in the aspect that they have already finished development as a muscle, but proliferate hardly at all. Therefore, cells such as myosattelite and myoblast cells are often used as they still proliferate at an acceptable rate, but also sufficiently differentiate from other types of cells.

Growth medium

The cells are then treated by applying a protein that promotes tissue growth. They are then placed in a culture medium, in a bio-reactor, which is able to supply the cells with the energetic requirements they need.

Scaffold

To culture three-dimensional meat, the cells are grown on a scaffold. The ideal scaffold is edible so the meat does not have to be removed, and periodically moves to stretch the developing muscle, thereby simulating the animal body during normal development.

Other considerations

Once this process has been started, it would be theoretically possible to continue producing meat indefinitely without introducing new cells from a living organism.[53] It has been claimed that, conditions being ideal, two months of cultured meat production could deliver up to 50,000 tons of meat from ten pork muscle cells.[54]

Cultured meat production requires a preservative, such as sodium benzoate, to protect the growing meat from yeast and fungus. Collagen powder, xanthan gum, mannitol and cochineal could be used in different ways during the process.[55]

The price of cultured meat at retail outlets like grocery stores and supermarkets may decrease to levels that middle-class consumers consider to be "inexpensive" due to technological advancements.[56]

Research

Challenges

The science for cultured meat is an outgrowth of the field of biotechnology known as tissue engineering.[57] The technology is simultaneously being developed along with other uses for tissue engineering such as helping those with muscular dystrophy and, similarly, growing transplant organs.[15][58] There are several obstacles to overcome if it has any chance of succeeding; at the moment, the most notable ones are scale and cost.[15][17]

  • Proliferation of muscle cells: Although it is not very difficult to make stem cells divide, for meat production it is necessary that they divide at a quick pace, producing the solid meat.[58] This requirement has some overlap with the medical branch of tissue engineering.
  • Culture medium: Proliferating cells need a food source to grow and develop. The growth medium should be a well-balanced mixture of ingredients and growth factors. Scientists have already identified possible growth media for turkey,[59] fish,[60] sheep[61] and pig[62] muscle cells. Depending on the motives of the researchers, the growth medium has additional requirements.
    • Commercial: The growth medium should be inexpensive to produce. A plant-based medium may be less expensive than fetal bovine serum.[58]
    • Animal welfare: The growth medium should be devoid of animal sources (except for the initial "mining" of the original stem cells).[58]
    • Non-Allergenic: While plant-based growth media are "more realistic," will be cheaper, and will reduce the possibility of infectious agents, there is also the possibility that plant-based growth media may cause allergic reactions in some consumers.[63]
  • Bioreactors: Nutrients and oxygen need to be delivered close to each growing cell, on the scale of millimeters. In animals this job is handled by blood vessels. A bioreactor should emulate this function in an efficient manner. The usual approach is to create a sponge-like matrix in which the cells can grow and perfuse it with the growth medium.

Differences from conventional meat

The first cultured hamburger being fried on 5 August 2013.

Health

Large-scale production of cultured meat may or may not require artificial growth hormones to be added to the culture for meat production.[57][64]

Researchers have suggested that omega-3 fatty acids could be added to cultured meat as a health bonus.[15] In a similar way, the omega-3 fatty acid content of conventional meat can also be increased by altering what the animals are fed.[65] An issue of Time magazine has suggested that the cell-cultured process may also decrease exposure of the meat to bacteria and disease.[17]

Due to the strictly controlled and predictable environment, cultured meat production has been compared to vertical farming, and some of its proponents have predicted that it will have similar benefits in terms of reducing exposure to dangerous chemicals like pesticides and fungicides, severe injuries, and wildlife.[66]

Artificiality

Although cultured meat consists of genuine animal muscle cells that are the same as in traditional meat, consumers may find such a high-tech approach to food production distasteful (see appeal to nature). Cultured meat has been disparagingly described as 'Frankenmeat'.[67]

If cultured meat turns out to be different in appearance, taste, smell, texture, or other factors, it may not be commercially competitive with conventionally produced meat. The lack of fat and bone may also be a disadvantage, for these parts make appreciable culinary contributions. However, the lack of bones and/or fat may make many traditional meat preparations, such as buffalo wings, more palatable to small children.[68]

Environmental

Research has suggested that environmental impacts of cultured meat would be significantly lower than normally slaughtered beef.[69] For every hectare that is used for vertical farming and/or cultured meat manufacturing, anywhere between 10 and 20 hectares of land may be converted from conventional agriculture usage back into its natural state.[70] Vertical farms (in addition to cultured meat facilities) could exploit methane digesters to generate a small portion of its own electrical needs. Methane digesters could be built on site to transform the organic waste generated at the facility into biogas which is generally composed of 65% methane along with other gasses. This biogas could then be burned to generate electricity for the greenhouse or a series of bioreactors.[71]

A study by researchers at Oxford and the University of Amsterdam found that cultured meat was "potentially ... much more efficient and environmentally-friendly", generating only 4% greenhouse gas emissions, reducing the energy needs of meat generation by up to 45%, and requiring only 2% of the land that the global meat/livestock industry does.[72][73] The patent holder Willem van Eelen,[21] the journalist Brendan I. Koerner,[74] and Hanna Tuomisto, a PhD student from Oxford University all believe it has less environmental impact.[75] This is in contrast to cattle farming, "responsible for 18% of greenhouse gases"[76] and causing more damage to the environment than the combined effects of the world's transportation system. Vertical farming may completely eliminate the need to create extra farmland in rural areas along with cultured meat.[77] Their combined role may create a sustainable solution for a cleaner environment.[77]

One skeptic is Margaret Mellon of the Union of Concerned Scientists, who speculates that the energy and fossil fuel requirements of large-scale cultured meat production may be more environmentally destructive than producing food off the land.[24] However, S.L. Davis has speculated that both vertical farming in urban areas and the activity of cultured meat facilities may cause relatively little harm to the species of wildlife that live around the facilities.[78] Dickson Despommier speculated that natural resources may be spared from depletion due to vertical farming and cultured meat, making them ideal technologies for an overpopulated world.[79] Conventional farming, on the other hand, kills ten wildlife animals per hectare each year.[78] Converting 4 hectares (10 acres) of farmland from its man-made condition back into either pristine wilderness or grasslands would save approximately 40 animals while converting 1 hectare (2 acres) of that same farmland back into the state it was in prior to settlement by human beings would save approximately 80 animals.

The role of genetic modification

Techniques of genetic engineering, such as insertion, deletion, silencing, activation, or mutation of a gene, are not required to produce cultured meat. Furthermore, cultured meat is composed of a tissue or collection of tissues, not an organism. Therefore, it is not a GMO (Genetically Modified Organism). Since cultured meats are simply cells grown in a controlled, artificial environment, some have commented that cultured meat more closely resembles hydroponic vegetables, rather than GMO vegetables.[80]

More research is being done on cultured meat, and although the production of cultured meat does not require techniques of genetic engineering, there is discussion among researchers about utilizing such techniques to improve the quality and sustainability of cultured meat. Fortifying cultured meat with nutrients such as beneficial fatty acids is one improvement that can be facilitated through genetic modification. The same improvement can be made without genetic modification, by manipulating the conditions of the culture medium.[81] Genetic modification may also play a role in the proliferation of muscle cells. The introduction of myogenic regulatory factors, growth factors, or other gene products into muscle cells may increase production past the capacity of conventional meat.[81]

To avoid the use of any animal products, the use of photosynthetic algae and cyanobacteria has been proposed to produce the main ingredients for the culture media, as opposed to the very commonly used fetal bovine or horse serum.[82] Some researchers suggest that the ability of algae and cyanobacteria to produce ingredients for culture media can be improved with certain technologies, most likely not excluding genetic engineering.[83]

Ethical considerations

The Australian bioethicist Julian Savulescu said "Artificial meat stops cruelty to animals, is better for the environment, could be safer and more efficient, and even healthier. We have a moral obligation to support this kind of research. It gets the ethical two thumbs up."[84] Animal welfare groups are generally in favor of the production of cultured meat because it does not have a nervous system and therefore cannot feel pain.[24][53][58] Reactions of vegetarians to cultured meat vary:[85] some feel the cultured meat presented to the public in August 2013 was not vegetarian as fetal calf serum was used in the growth medium.[86] However since then lab grown meat has been grown under a medium that doesn't involve fetal serum. [87]

Independent inquiries may be set up by certain governments to create a degree of standards for cultured meat.[88] Laws and regulations on the proper creation of cultured meat products would have to be modernized to adapt to this newer food product.[88] Some societies may decide to block the creation of cultured meat for the "good of the people" – making its legality in certain countries a questionable matter.[88]

Cultured meat needs technically sophisticated production methods making it harder for communities to produce food self-sufficiently and potentially increasing dependence on global food corporations.[89]

Religious considerations

Jews disagree whether cultured meat is kosher (food that may be consumed, according to Jewish dietary laws). However, most rabbis agree that if the original cells were taken from a kosher animal then the cultured meat will be kosher. Some even think that it would be kosher even if coming from non-kosher animals like pigs, however some disagree, quoting the Torah, "That which is derived from something that is non-kosher [unclean] it itself not kosher. [7] Some Muslim scholars have stated that cultured meat would be allowed by Islamic law if the original cells and growth medium were halal.[90]

Economic

The production of cultured meat is currently very expensive – in 2008 it was about US$1 million for a piece of beef weighing 250 grams (0.55 lb)[17] – and it would take considerable investment to switch to large-scale production. However, the In Vitro Meat Consortium has estimated that with improvements to current technology there could be considerable reductions in the cost of cultured meat. They estimate that it could be produced for €3500/tonne (US$5424/tonne in March 2008),[91][92] which is about twice the cost of unsubsidized conventional European chicken production.[18][91]

In a March 2015 interview with Australia's ABC, Mark Post said that the marginal cost of his team's original €250,000 burger was now €8.00. He estimates that technological advancements would allow the product to be cost-competitive to traditionally sourced beef in approximately ten years.[93] In 2016, the cost of production of cultured beef for food technology company Memphis Meats was $18,000 per pound ($40,000/kg).[94] As of June 2017 Memphis Meats reduced the cost of production to below $2,400 per pound ($5,280/kg).[95]

In fiction

Cultured meat has often featured in science fiction. The earliest mention may be in Two Planets (original German title: Auf Zwei Planeten) (1897) by Kurd Lasswitz, where "synthetic meat" is one of the varieties of synthetic food introduced on Earth by Martians. Other notable books mentioning artificial meat include Ashes, Ashes (1943) by René Barjavel; The Space Merchants (1952) by Frederik Pohl and C.M. Kornbluth; The Restaurant at the End of the Universe (1980) by Douglas Adams; Le Transperceneige (Snowpiercer) (1982) by Jacques Lob and Jean-Marc Rochette; Neuromancer (1984) by William Gibson; Oryx and Crake (2003) by Margaret Atwood; Deadstock (2007) by Jeffrey Thomas; Accelerando (2005) by Charles Stross; Ware Tetralogy by Rudy Rucker; and Divergent (2011) by Veronica Roth.

In film, artificial meat has featured prominently in Giulio Questi's 1968 drama La morte ha fatto l'uovo (Death Laid an Egg) and Claude Zidi's 1976 comedy L'aile ou la cuisse (The Wing or the Thigh). "Man-made" chickens also appear in David Lynch's 1977 surrealist horror, Eraserhead. Most recently, it was also featured prominently as the central theme of the movie Antiviral (2012).

The Starship Enterprise from the TV and movie franchise Star Trek apparently provides a synthetic meat or cultured meat as a food source for the crew,[96] although crews from The Next Generation and later use replicators.

In the ABC sitcom Better Off Ted (2009–2010), the episode "Heroes" features Phil (Jonathan Slavin) and Lem (Malcolm Barrett) trying to grow cowless beef.

In the videogame Project Eden, the player characters investigate a cultured meat company called Real Meat.

In the movie “GalaxyQuest”, during the dinner scene, Tim Allen’s character refers to his steak tasting like “real Iowa beef”.

Cultured meat was a subject on an episode of the Colbert Report on 17 March 2009.[97]

In February, 2014, a biotech startup called BiteLabs ran a campaign to generate popular support for artisanal salami made with meat cultured from celebrity tissue samples.[98] The campaign became viral on Twitter, where users tweeted at celebrities asking them to donate muscle cells to the project.[99] Media reactions to BiteLabs variously identified the startup as a satire on startup culture,[100] celebrity culture,[101] or as a discussion prompt on bioethical concerns.[102] While BiteLabs claimed to be inspired by the success of Sergey Brin's burger, the company is seen as an example of critical design rather than an actual business venture.

In late 2016, cultured meat was involved in a case in the episode "How The Sausage Is Made" of CBS show Elementary.

See also

References

  1. Datar, I (January 2010). "Possibilities for an in vitro meat production system". Innovative Food Science & Emerging Technologies. doi:10.1016/j.ifset.2009.10.007. Retrieved 8 April 2018.
  2. Post, Mark (4 December 2013). "Medical technology to Produce Food". Journal of the Science of Food and Agriculture. doi:10.1002/jsfa.6474. Retrieved 20 June 2016.
  3. Edelman, PD (3 May 2005). "Commentary: In Vitro-Cultured Meat Productionsystem". Tissue Engineering. doi:10.1089/ten.2005.11.659. Retrieved 8 April 2018.
  4. Schonwald, Josh (May 2009). "Future Fillet". The University of Chicago Magazine.
  5. Chalmers University of Technology (7 September 2011). "Growing meat in the lab: Scientists initiate action plan to advance cultured meat". Science Daily.
  6. Bekker, Gerben A.; Tobi, Hilde; Fischer, Arnout R.H. (July 2017). "Meet meat: An explorative study on meat and cultured meat as seen by Chinese, Ethiopians and Dutch". Appetite. doi:10.1016/j.appet.2017.03.009. Retrieved 10 April 2017.
  7. 1 2 JTA. "Rabbi: Lab-grown pork could be kosher for Jews to eat – with milk". Times Of Israel. Retrieved 22 March 2018.
  8. 1 2 "A Lab-Grown Burger Gets a Taste Test". The New York Times. 6 August 2013. Retrieved 2 February 2016.
  9. ""Clean Meat": The "Clean Energy" of Food".
  10. "Clean Meat: The "Clean Energy" of Food". 6 September 2016.
  11. "Lab-made meat rebranded 'clean meat' to address 'yuck' factor". GlobalMeatNews.
  12. ""Clean meat" is catching on: a reflection on nomenclature". The Good Food Institute.
  13. Fifty Years Hence, The Strand Magazine (December 1931)
  14. Ross, Russell (1 July 1971). "Growth of Smooth Muscle in Culture and Formation of Elastic Fibers". The Journal of Cell Biology. pp. 172–186. Retrieved 12 February 2015.
  15. 1 2 3 4 5 Macintyre, Ben (2007-01-20). "Test-tube meat science's next leap". The Australian. Archived from the original on 2011-11-02. Retrieved 2011-11-26.
  16. Webb, Sarah (2006-01-08). "Tissue Engineers Cook Up Plan for Lab-Grown Meat (The Year in Science: Technology)". Discover. Retrieved 2009-08-07.
  17. 1 2 3 4 5 6 Siegelbaum, D.J. (2008-04-23). "In Search of a Test-Tube Hamburger". Time. Retrieved 2009-04-30.
  18. 1 2 Temple, James (2009-02-23). "The Future of Food: The No-kill Carnivore". Portfolio.com. Archived from the original on 2009-04-02. Retrieved 2009-08-07.
  19. Benjaminson, Morris (2001-12-05). "Featured Research at Touro: Growing Fish Fillets Outside the Fish". Touro College School of Health Sciences. Retrieved 2010-01-10. Advance announcement of paper's publication in Acta Astronautica (not found there, but note Journal articles below).
  20. WO9931222 A1 Application WO9931222, van Eelen, Willem Frederik; Willem Jan van Kooten & Wiete Westerhof, "Industrial scale production of meat from in vitro cell cultures", published 1999-06-24
  21. 1 2 3 van Eelen, Willem (2007-12-12). "Patent holder Willem van Eelen: 'In another five years meat will come out of the factory'". inVitroMeat Foundation, operated by Willem van Eelen. Appears to be a publication of an English translation of an article in Dutch by Anouck Vrouwe (subscribers only) from Het Financieele Dagblad
  22. "Ingestion / Disembodied Cuisine". Cabinet Magazine. Winter 2004–2005.
  23. "Paper Says Edible Meat Can be Grown in a Lab on Industrial Scale" (Press release). University of Maryland. 2005-07-06. Archived from the original on 2005-07-25. Retrieved 2008-10-12.
  24. 1 2 3 Levine, Ketzel (2008-05-20), Lab-Grown Meat a Reality, But Who Will Eat It?, National Public Radio, retrieved 2010-01-10
  25. "The 50 Best Inventions of 2009". Time. 2009-11-12.
  26. Rogers, Lois (2009-11-29). "Scientists grow pork meat in a laboratory". The Sunday Times. London. Archived from the original on 2010-01-06. Retrieved 2009-12-08.
  27. Lab-Grown Meat? $1 Million Reward Deadline Nears at FoodSafetyNews.com
  28. 1 2 "World's first lab-grown burger is eaten in London". BBC News. Retrieved 2 February 2016.
  29. Fountain, Henry. "Engineering the $325,000 In Vitro Burger". Retrieved 2018-06-12.
  30. "The artificial meat factory - the science of your synthetic supper". Science Focus. Retrieved 2018-06-12.
  31. "'Meat' the Founder behind the Lab-Grown Burger Investors are Queuing for". Labiotech.eu. 2017-04-24. Retrieved 2018-06-12.
  32. "The Science Behind Lab-Grown Meat". A Bit of Science. Retrieved 2018-06-12.
  33. "The Science Behind Lab-Grown Meat". A Bit of Science. Retrieved 2018-06-12.
  34. 1 2 "What does a stem cell burger taste like?". BBC News. Retrieved 2 February 2016.
  35. Fountain, Henry (May 12, 2013). "Building a $325,000 Burger". New York Times. Retrieved May 15, 2013.
  36. 1 2 Bunge, Jacob. "Sizzling Steaks May Soon Be Lab-Grown". The Wall Street Journal. Retrieved 4 February 2016.
  37. "'World's first' lab-grown meatball revealed". Fox News. Retrieved 4 February 2016.
  38. "You Could Be Eating Lab-Grown Meat in Just Five Years". Fortune. Retrieved 4 February 2016.
  39. Bunge, Jacob. "Startup Serves Up Chicken Produced From Cells in Lab". The Wall Street Journal. Retrieved 17 March 2017.
  40. Farber, Madeline. "A San Francisco Startup Is Serving Chicken That Was Made in a Lab". Fortune. Retrieved 17 March 2017.
  41. Kooser, Amanda. "This lab-grown chicken and duck meat looks surprisingly delicious". CNET. Retrieved 17 March 2017.
  42. Cheyenne MacDonald (27 July 2016). "Feel like chicken tonight? New 'supermeat' can be grown in the lab without an animal in sight". The Daily Mail.
  43. Lulu Chang (11 July 2016). "SuperMeat wants you to try its lab-grown chicken breast". Digital Trends.
  44. "Lab-Grown Chicken Could Soon Be On Your Plate". Sky News. Retrieved 5 August 2016.
  45. Chang, Lulu. "Would you eat lab grown chicken? SuperMeat sure hopes so". Yahoo News. Retrieved 5 August 2016.
  46. "The Israeli Startup That Lets You Eat Meat - Without Eating the Animal". Haaretz. Retrieved 5 August 2016.
  47. "No harm, no fowl: Startup to grow chickenless chicken". The Times of Israel. Retrieved 5 August 2016.
  48. Jon Card (24 July 2017). "Lab-grown food: 'the goal is to remove the animal from meat production'". The Guardian. Retrieved 13 January 2018.
  49. Mac van Dinther (31 March 2018). "Een écht stukje vlees, zonder dat daar dode dieren aan te pas komen: het komt eraan". de Volkskrant (in Dutch). Retrieved 20 May 2018.
  50. Erin Brodwin (28 September 2018). "A new lab-grown meat startup may have overcome a key barrier to making meat without slaughter". Business Insider. Retrieved 29 September 2018.
  51. "Cultured meat". Future Food. 2016. Retrieved March 24, 2017.
  52. https://ourarchive.otago.ac.nz/bitstream/handle/10523/4101/MayAdamSG2013MSciComm.pdf In vitro meat: protein for twelve billion?], Adam May, University of Otago, 2012
  53. 1 2 Raizel, Robin (2005-12-11). "In Vitro Meat". The New York Times. Retrieved 2009-08-07.
  54. Artificial meat grown in a lab could become a reality THIS year at DailyMail.co.uk
  55. In vitro meat habitat at Terreform
  56. Kurzweil, Raymond (2005). The Singularity is Near. Penguin Books. ISBN 0-14-303788-9.
  57. 1 2 Edelman, P. D, D. C. McFarland, V. A. Mironov, and J. G. Matheny. 2005. In vitro-cultured meat production. Tissue Engineering 11(5–6): 659–662.
  58. 1 2 3 4 5 Kruglinski, Susan; Wright, Karen (2008-09-22). "I'll Have My Burger Petri-Dish Bred, With Extra Omega-3". Discover.
  59. McFarland, D. C., Doumit, M. E., & Minshall, R. D. (1988). The turkey myogenic satellite cell: Optimization of in vitro proliferation and differentiation. Tissue and Cell, 20(6), 899–908. doi:10.1016/0040-8166(88)90031-6
  60. Benjaminson, M. A., Gilchriest, J. A., & Lorenz, M. (2002). In vitro edible muscle protein production system (MPPS): Stage 1, fish. Acta Astronautica, 51(12), 879–889.
  61. Dodson, M. V., & Mathison, B. A. (1988). Comparison of ovine and rat muscle-derived satellite cells: Response to insulin. Tissue and Cell, 20(6), 909–918.
  62. Doumit, M. E., Cook, D. R., & Merkel, R. A. (1993). Fibroblast growth factor, epidermal growth factor, insulin-like growth factor and platelet-derived growth factor-BB stimulate proliferate of clonally derived porcine myogenic satellite cells. Journal of Cellular Physiology, 157(2), 326–332 doi:10.1002/jcp.1041570216.
  63. I. Datar, M. Betti, Possibilities for an in vitro meat production system, Innovative Food Science and Emerging Technologies 11 (2010) at 17.
  64. Marta Zaraska. "Is Lab-Grown Meat Good for Us?". The Atlantic. Retrieved 2 February 2016.
  65. Azcona, J.O., Schang, M.J., Garcia, P.T., Gallinger, C., R. Ayerza (h), and Coates, W. (2008). "Omega-3 enriched broiler meat: The influence of dietary alpha-linolenic omega-3 fatty acid sources on growth, performance and meat fatty acid composition". Canadian Journal of Animal Science, Ottawa, Ontario, Canada, 88:257–269
  66. Despommier, D. (2008). "Vertical Farm Essay I". Vertical Farm. Archived from the original on 2009-07-01. Retrieved 2009-06-26.
  67. "Lab-grown food: It's what's for dinner!". CNET. Retrieved 2017-07-08.
  68. Pigott, George M.; Tucker, Barbee W. (1990). Seafood. CRC Press. p. 236. ISBN 0-8247-7922-3.
  69. Tuomisto, Hannah (2011-06-17), Environmental Impacts of Cultured Meat Production, American Chemical Society, doi:10.1021/es200130u, retrieved 2013-09-21
  70. A Farm on Every Floor, The New York Times, August 23, 2009
  71. Case Study – Landfill Power Generation Archived December 3, 2008, at the Wayback Machine., H. Scott Matthews, Green Design Initiative, Carnegie Mellon University. Retrieved 07.02.09
  72. Specter, Michael (2011-05-23), Annals of Science, Test-Tube Burgers, The New Yorker, retrieved 2010-06-28
  73. Lab-grown meat would 'cut emissions and save energy', 21 June 2011
  74. Koerner, Brendan I. (2008-05-20). "Will Lab-Grown Meat Save the Planet? Or is it only good for cows and pigs?". Slate.
  75. Cheng, Maria (2010-01-15). "Stem Cells Turned Into Pork". Archived from the original on 2010-01-18. Retrieved 2010-04-03.
  76. "Livestock a major threat to environment". FAO Newsroom.
  77. 1 2 The Vertical Farm Project. 2009. "Agriculture for the 21st Century and Beyond."
  78. 1 2 S.L. Davis (2001). "The least harm principle suggests that humans should eat beef, lamb, dairy, not a vegan diet". Proceedings of the Third Congress of the European Society for Agricultural and Food Ethics. pp. 449–450.
  79. Despommier, Dickson (November 2009). "The Rise of Vertical Farms". Scientific American. New York: Scientific American Inc. 301 (5): 60–67. ISSN 0036-8733. Archived from the original on 2011-03-19. Retrieved 2010-11-10.
  80. Sandhana, Lakshmi. "Test Tube Meat Nears Dinner Table". Archived from the original on August 19, 2013. Retrieved 27 January 2014.
  81. 1 2 Vein, John. "Patent US6835390". Retrieved 27 January 2014.
  82. Haagsman, H.P.; K.J. HelIingwerf; B.A.J. Roelen (October 2009). "Production of Animal Proteins by Cell Systems" (PDF). Universiteit Utrecht: Faculty of Veterinary Medicine: 13–14. Archived from the original (PDF) on 12 November 2013. Retrieved 27 January 2014.
  83. Tuomisto, Hanna L.; Teixeira de Mattos, M. J. (22–24 September 2010). "Life cycle assessment of cultured meat production" (PDF): 5. Archived from the original (PDF) on 3 February 2014. Retrieved 27 January 2014.
  84. Alok Jha. "Synthetic meat: how the world's costliest burger made it on to the plate". the Guardian. Retrieved 2 February 2016.
  85. "Could vegetarians eat a 'test tube' burger?". BBC News. Retrieved 2 February 2016.
  86. "Can Vegetarians Eat In-Vitro Meat? The Debate Rages". The Daily Beast. Retrieved 2 February 2016.
  87. "A new lab-grown meat startup may have overcome a key barrier to making meat without slaughter". UK Business Insider. Retrieved September 28 2018. Check date values in: |accessdate= (help)
  88. 1 2 3 In vitro meat Archived 2011-11-21 at the Wayback Machine. at Food Ethics Council
  89. "In Vitro Meat: Power, Authenticity and Vegetarianism". Archived from the original on 2013-08-05. Retrieved 2013-08-05.
  90. Billinghurst, Thomas (2013-05-02). "Is 'shmeat' the answer?". Gulf News. Retrieved 2013-10-10.
  91. 1 2 The In Vitro Meat Consortium (March 2008). "Preliminary Economics Study" (PDF). Archived from the original (PDF) on 2015-10-03.
  92. "Wolfram-Alpha: Computational Knowledge Engine". Retrieved 2 February 2016.
  93. Post, Mark (26 March 2015). "Mark Post of Maastricht University in the Netherlands has developed synthetic beef patties". Australian Broadcasting Corporation. Retrieved 14 May 2015.
  94. "'World's first' lab-grown meatball revealed". Fox News. 3 February 2016.
  95. Bunge, Jacob (2017-08-23). "Cargill Invests in Startup That Grows 'Clean Meat' From Cells". Wall Street Journal. ISSN 0099-9660. Retrieved 2017-11-02.
  96. "Star Trek 'Charlie X'".
  97. "The Colbert Report: World of Nahlej – Shmeat". Comedy Central. 2009-03-17. Retrieved 2016-12-01.
  98. "BiteLabs".
  99. "Hunger Game? Startup Whets Public Appetite For Salami Made From Celebrities". Huffington Post. 2014-03-03.
  100. "The Guy Who Wants to Sell Lab-Grown Salami Made of Kanye West Is "100% Serious"".
  101. "No, This Website Won't Actually Make Salami Out Of Famous People". Time. 2014-02-28.
  102. Harris, Jenn (2014-03-05). "Ellen DeGeneres salami? One company's quest to make meat from celebrity tissue samples". Los Angeles Times.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.