Kracht

Een kracht is een natuurkundige grootheid, die een voorwerp van vorm of van snelheid kan veranderen. Door de werking van een kracht kan arbeid verricht worden. Krachten kunnen worden genoemd naar de werking die ze op een voorwerp hebben, zoals trekkracht, drukkracht en dwarskracht. Krachten kunnen ook worden genoemd naar hun oorzaak of werking, zoals wrijvingskracht, zwaartekracht en middelpuntzoekende kracht.

Enkele voorbeelden van optredende krachten.

Een kracht kan worden overgebracht door contact tussen voorwerpen of deeltjes die in vaste, vloeibare, gasvormige aggregatietoestand verkeren, of door een krachtenveld. Deze krachtenvelden zijn in de klassieke natuurkunde van elektromagnetische of gravitationele aard.

Kracht heeft een grootte en een richting, en kan daardoor grafisch (visueel) worden voorgesteld als een vectorgrootheid.

Begripsontwikkeling

Het woord kracht is van Oergermaanse oorsprong, verbonden met het beeld van spierspanning. Kracht betekende aanvankelijk de lichamelijke (spierkracht) of geestelijke (geestkracht) voorwaarde voor bepaalde handelingen en later ook de uitvoering van de handeling, de kracht uitoefenen.

Kracht heeft ook een figuurlijke betekenis. Het betekent in de rechtspraak de geldigheid of werkzaamheid: een wet wordt van kracht of is niet meer van kracht. Buiten de rechtspraak komt de betekenis van werkzaamheid, vermogen voor: geneeskracht, daadkracht, overredingskracht.

Het begrip kracht wordt sinds ongeveer het einde van de 18e eeuw ook op mensen als drager van kracht betrokken: strijdkrachten, leerkracht, mankracht en sinds de 20e eeuw ook op machinaal opgewekte energie: krachtbron, krachtcentrale.

In het Engels heeft craft zich ontwikkeld tot ambacht, handwerk, bekwaamheid.

Van het Griekse woord voor kracht, δύναμις zijn dyne, dat is een cgs-eenheid, en dynamica afgeleid, de leer van beweging onder invloed van krachten. In de natuurkundige terminologie is 'kracht' al zeker sinds de 17e eeuw met het Latijnse 'vis' gelijkgesteld.

Het lange tijd weinig precieze en volgens tegenwoordige inzichten gedeeltelijk verkeerde gebruik van het begrip 'kracht' in de natuurkunde is grotendeels terug te voeren op de visie van Aristoteles op beweging, die tot ver in de renaissance doorgewerkt heeft. In deze visie is de grondslag van iedere beweging een werkende oorzaak, die we nu 'kracht' zouden noemen. Een daardoor veroorzaakte beweging eindigt vanzelf als de kracht niet meer werkt. Deze kracht kan alleen werken door direct contact, en wordt daarom in verband gebracht met de snelheid van het lichaam, een verband dat door latere commentatoren als evenredig werd uitgelegd.

De nu achterhaalde impetus-theorie ontstond in de middeleeuwen uit de leer van Aristoteles. Dat was een bewegingsleer samengesteld uit verschillende ideeën. Hun gemeenschappelijke kern is een opgelegde kracht, de 'impetus', die door een 'eerste beweger' aan een lichaam wordt meegegeven. Deze impetus bevindt zich in het lichaam en slaapt met de tijd in, wat versterkt wordt door de weerstand van het medium, zoals lucht. Een beweging eindigt ook in deze theorie vanzelf wanneer het lichaam "geen kracht meer heeft". In tegenstelling tot Aristoteles was er geen externe beweger nodig. De prangende vraag op welke wijze een in de lucht geworpen voorwerp in beweging wordt gehouden, was daarmee schijnbaar opgelost. Wel werd vastgehouden aan de evenredigheid van kracht en snelheid.

Ook Galilei steunde op de ideeën van Aristoteles, maar hij kwam dicht bij de traagheidswet. In deze wet is een kracht niet meer nodig om een beweging in stand te houden, maar juist om een beweging te veranderen. Het was Newton die in zijn bewegingswetten uit 1687 het begrip kracht beschreef op de manier waarop het nu nog gebruikt wordt. Tot ver in de 19e eeuw gebruikten natuurkundigen het woord 'kracht' ook in betekenissen die niet door de wetten van Newton gedekt worden, in het bijzonder in de betekenis van energie. Zo werd bijvoorbeeld, voordat het moderne energiebegrip ingevoerd was, de kinetische energie met de, door Leibniz bedachte en nog door Helmholtz gebruikte, uitdrukking vis viva, levende kracht, gebruikt.

Wetten van Newton

Eerste wet

De eerste wet van Newton stelt dat wanneer er op een voorwerp geen resulterende kracht werkt dit voorwerp geen snelheidsverandering zal ondergaan. Met een resulterende kracht wordt een kracht bedoeld die niet wordt opgeheven door andere krachten. Dit is in de alledaagse wereld heel vaak van toepassing doordat het effect van zwaartekracht en andere krachten vaak wordt opgeheven door weer andere krachten, zoals normaalkracht, wrijving, adhesie en cohesie.[1] Vooral door wrijvingskracht was deze wet niet evident, omdat bijvoorbeeld de ervaring leerde dat om een kar een gelijke snelheid te laten houden er constant een kracht moet worden uitgeoefend.

Tweede wet

De tweede wet van Newton definieert een resulterende kracht als verandering van beweging. De verandering van de beweging is evenredig met de kracht en volgt de richting waarin de kracht werkt.

De kracht op een voorwerp is gelijk aan de verandering per tijdseenheid van de impuls ("beweging") van het voorwerp. De impuls is het product van de massa m en de snelheid .

De tweede wet van Newton luidt in formulevorm:

Als de massa niet verandert[2] geldt voor de kracht

met

  • m de massa van het lichaam
  • de versnelling (verandering van de snelheid per tijdseenheid) van het zwaartepunt van het lichaam.

De richting van de kracht is de richting van de versnelling.

Derde wet

De derde wet van Newton: actie = −reactie, stelt dat krachtwerking tussen twee voorwerpen altijd wederzijds is, met tegengestelde richtingen.[3]

Bij krachten die op afstand werken, wordt impuls uitgewisseld door middel van de krachtvoerende deeltjes (ijkbosonen).

Krachtwerking

Een kracht wordt behalve door grootte en richting bepaald door de plaats waar hij op een lichaam inwerkt. Er wordt bijvoorbeeld verschil gemaakt tussen oppervlaktekrachten en volumekrachten. Een belasting is in de constructieleer is een kracht of moment, die op een bepaald deel van een voorwerp of constructie inwerkt.

Indien de som van alle krachten op een lichaam nul is dan ondergaat het massamiddelpunt geen versnelling. Het lichaam kan onder invloed van die krachten wel vervormen. Bijvoorbeeld het lichaam kan door twee tegengestelde krachten uitrekken. Vrijmaken is in de klassieke mechanica een manier om berekeningen mogelijk te maken door de alle starre onderdelen van een geheel apart te nemen en daarna alle uitwendige krachten als vectoren voor te stellen.

Newton

De SI-eenheid van kracht, de newton, is naar Sir Isaac Newton genoemd. Tijdgenoten van Newton zoals Christiaan Huygens, Edmond Halley, Robert Hooke en Christopher Wren, onderschreven het idee dat planeten in hun banen lopen door een zwaartekracht die kwadratisch afneemt met de afstand tot de zon. De bijdrage van Newton was dat hij erin slaagde een wiskundig bewijs te leveren dat zo'n zwaartekracht inderdaad de planeten in de geobserveerde planeetbanen laat lopen waarmee de experimenteel bepaalde wetten van Kepler verklaard werden en dat dit dezelfde zwaartekracht is die ook op aarde heerst.[4]

De wetten van Newton vormen de fundamenten van de mechanica en dynamica.

Verwarrende benamingen

Fundamentele krachten

Alle krachten in natuurkundige zin zijn een samenstelling van een of meer van de vier fundamentele natuurkrachten. Naast de alomtegenwoordige zwaartekracht, zelf een van de fundamentele natuurkrachten, zijn de meeste alledaagse verschijnselen zoals wrijving en hardheid gebaseerd op de elektromagnetische kracht waarmee vaste stoffen bij elkaar gehouden worden.

Standaardmodel

In het standaardmodel, waarin elementaire deeltjes worden geclassificeerd, is een kracht een verschijnsel dat wordt veroorzaakt door impulsoverdracht door opnemen en uitzenden van ijkbosonen. De bekendste van deze ijkbosonen is het foton, dat voor voor de elektromagnetische kracht verantwoordelijk is.

De drie volgens het standaardmodel (en een eventuele vierde) bekende krachten zijn[6]:

  1. De elektromagnetische kracht met als ijkboson het foton
  2. De sterke kernkracht met als ijkbosonen de gluonen
  3. De zwakke kernkracht met als ijkbosonen de W- en Z-bosonen
  4. De zwaartekracht met als ijkboson het graviton[7]
Grootheden en eenheden in de (klassieke) mechanica
lineaire/translatie grootheden
Wat meten tijdsintegralen? 'nabijheid' ('nearness') 'verheid' ('farness')
Dimensie L−1 1 L L2
T9 presrop (Engels)
m−1·s9
absrop (Engels)
m·s9
T8 presock (Engels)
m−1·s8
absock (Engels)
m·s8
T7 presop (Engels)
m−1·s7
absop (Engels)
m·s7
T6 presackle (Engels)
m−1·s6
absrackle (Engels)
m·s6
T5 presounce (Engels)
m−1·s5
absounce (Engels)
m·s5
T4 preserk (Engels)
m−1·s4
abserk (Engels): D
m·s4
T3 preseleration (Engels)
m−1·s3
abseleration (Engels): C
m·s3
hoek/rotatie grootheden
T2 presity (Engels)
m−1·s2
absity (Engels): B
m·s2
Dimensie 1 geen (m·m−1) geen (m2·m−2)
T presement (Engels)
m−1·s
tijd: t
s
absition/absement (Engels): A
m·s
T tijd: t
s
1 placement (Engels)
golfgetal
m−1
afgelegde weg: d
plaatsvector: r, s, x
afstand: s
m
oppervlakte: A
m2
1 hoek: θ
rad
ruimtehoek: Ω
rad2, sr
Wat meten tijdsafgeleiden? 'rasheid' ('swiftness')
T−1 frequentie: f
s−1, Hz
snelheid (scalar): v
snelheid (vector): v
m·s−1
kinematische viscositeit: ν
diffusiecoëfficiënt: D
specifiek impulsmoment: h
m2·s−1
T−1 frequentie: f
s−1, Hz
hoeksnelheid: ω, ω
rad·s−1
T−2 versnelling: a
m·s−2
verbrandingswarmte
geabsorbeerde dosis: D
radioactieve-dosisequivalent
m2·s−2, J·kg−1, Gy, Sv
T−2 hoekversnelling: α
rad·s−2
T−3 ruk: j
m·s−3
T−3 hoekruk: ζ
rad·s−3
T−4 jounce/snap (Engels): s
m·s−4
T−5 crackle (Engels): c
m·s−5
T−6 pop (Engels): Po
m·s−6
T−7 lock (Engels)
m·s−7
T−8 drop (Engels)
m·s−8
M lineaire dichtheid:
kg·m−1
massa: m
kg
ML2 massatraagheidsmoment: I
kg·m2
Wat meten tijdsafgeleiden? 'sterkheid' ('forceness')
MT−1 dynamische viscositeit: η
kg·m−1·s−1, N·m−2·s, Pa·s
impuls: p (momentum),
stoot: J, p (impulse)
kg·m·s−1, N·s
actie: 𝒮
actergie:
kg·m2·s−1, N·m·s, J·s
ML2T−1 impulsmoment (momentum angularis): L
kg·m2·s−1
actie: 𝒮
actergie:
kg·m2·s−1, N·m·s, J·s
MT−2 druk: p
mechanische spanning: 
energiedichtheid: U
kg·m−1·s−2, N·m−2, J·m−3, Pa
oppervlaktespanning: of
kg·s−2, N·m−1, J·m−2
kracht: F
gewicht: Fg
·kg·m·s−2, N
energie: E
arbeid: W
warmte: Q
kg·m2·s−2, Nm, J
ML2T−2 krachtmoment (torque): M, τ
kg·m2·s−2, Nm
energie: E
arbeid: W
warmte: Q
kg·m2·s−2, Nm, J
MT−3 yank (Engels): Y
kg·m·s−3, N·s−1
vermogen: P
kg·m2·s−3, W
ML2T−3 rotatum: P
kg·m2·s−3, N·m·s−1
vermogen: P
kg·m2 ·s−3, W
MT−4 tug (Engels): T
kg·m·s−4, N·s−2
MT−5 snatch (Engels): S
kg·m·s−5, N·s−3
MT−6 shake (Engels): Sh
kg·m·s−6, N·s−4
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.