Hoeksnelheid

De hoeksnelheid van een roterend object of van een punt dat een cirkelvormige beweging beschrijft, is de verandering in de tijd van de doorlopen hoek, preciezer gezegd de afgeleide van de doorlopen hoek. De eenheid waarin de hoeksnelheid wordt uitgedrukt in het SI stelsel is radialen per seconde.

Algemeen geldt: als de draaiing beschreven wordt door de hoek op het tijdstip dan is de hoeksnelheid op dat tijdstip:

Is de draaiing eenparig, dan is de hoeksnelheid constant en eenvoudig de per tijdseenheid doorlopen hoek. In dat geval wordt de hoeksnelheid vaak aangeduid met het symbool (omega). Als de frequentie van de draaiing is, dus keer per tijdseenheid wordt een cirkel doorlopen, is de periode , de tijd nodig voor één rondgang:

Er geldt dus:

Om voor een driedimensionale ruimte berekeningen uit te kunnen voeren, is de hoeksnelheid gedefinieerd als een vector langs de rotatieas. Deze vector wordt gegeven door de volgende vergelijking:

In deze vergelijking veranderen zowel de vector als de vector voortdurend van richting, beide draaien met de draaiing mee. De vector blijft echter altijd dezelfde richting en grootte hebben, als de draaiing stationair is.

De richting van de vector wordt gevonden door de kurkentrekkerregel - ook wel rechterhandregel genoemd - toe te passen op bovenstaand vectorieel product. Daarmee is de hoeksnelheidsvector niet werkelijk een vector, maar een pseudovector.

Een andere manier om de richting van te vinden is het toepassen van de kurkentrekkerregel op de cirkelbeweging zelf.

Er is een verband tussen hoeksnelheid en omtrekssnelheid van een punt op de omtrek van een lichaam straal

SI-Eenheid van snelheid: [v] = m/s.

Eenheden

De hoeksnelheid kan in verschillende eenheden worden uitgedrukt, bijvoorbeeld

  • In radialen per seconde (de SI-eenheid): , met de tijd in seconden die het object nodig heeft om 1 omwenteling te maken.
  • In graden per seconde: .
  • In RPM (revolutions per minute) of TPM (toeren per minuut): het aantal omwentelingen per minuut. Deze eenheid is in de motor- en voertuigtechniek gebruikelijk.

Zie ook

Grootheden en eenheden in de (klassieke) mechanica
lineaire/translatie grootheden
Wat meten tijdsintegralen? 'nabijheid' ('nearness') 'verheid' ('farness')
Dimensie L−1 1 L L2
T9 presrop (Engels)
m−1·s9
absrop (Engels)
m·s9
T8 presock (Engels)
m−1·s8
absock (Engels)
m·s8
T7 presop (Engels)
m−1·s7
absop (Engels)
m·s7
T6 presackle (Engels)
m−1·s6
absrackle (Engels)
m·s6
T5 presounce (Engels)
m−1·s5
absounce (Engels)
m·s5
T4 preserk (Engels)
m−1·s4
abserk (Engels): D
m·s4
T3 preseleration (Engels)
m−1·s3
abseleration (Engels): C
m·s3
hoek/rotatie grootheden
T2 presity (Engels)
m−1·s2
absity (Engels): B
m·s2
Dimensie 1 geen (m·m−1) geen (m2·m−2)
T presement (Engels)
m−1·s
tijd: t
s
absition/absement (Engels): A
m·s
T tijd: t
s
1 placement (Engels)
golfgetal
m−1
afgelegde weg: d
plaatsvector: r, s, x
afstand: s
m
oppervlakte: A
m2
1 hoek: θ
rad
ruimtehoek: Ω
rad2, sr
Wat meten tijdsafgeleiden? 'rasheid' ('swiftness')
T−1 frequentie: f
s−1, Hz
snelheid (scalar): v
snelheid (vector): v
m·s−1
kinematische viscositeit: ν
diffusiecoëfficiënt: D
specifiek impulsmoment: h
m2·s−1
T−1 frequentie: f
s−1, Hz
hoeksnelheid: ω, ω
rad·s−1
T−2 versnelling: a
m·s−2
verbrandingswarmte
geabsorbeerde dosis: D
radioactieve-dosisequivalent
m2·s−2, J·kg−1, Gy, Sv
T−2 hoekversnelling: α
rad·s−2
T−3 ruk: j
m·s−3
T−3 hoekruk: ζ
rad·s−3
T−4 jounce/snap (Engels): s
m·s−4
T−5 crackle (Engels): c
m·s−5
T−6 pop (Engels): Po
m·s−6
T−7 lock (Engels)
m·s−7
T−8 drop (Engels)
m·s−8
M lineaire dichtheid:
kg·m−1
massa: m
kg
ML2 massatraagheidsmoment: I
kg·m2
Wat meten tijdsafgeleiden? 'sterkheid' ('forceness')
MT−1 dynamische viscositeit: η
kg·m−1·s−1, N·m−2·s, Pa·s
impuls: p (momentum),
stoot: J, p (impulse)
kg·m·s−1, N·s
actie: 𝒮
actergie:
kg·m2·s−1, N·m·s, J·s
ML2T−1 impulsmoment (momentum angularis): L
kg·m2·s−1
actie: 𝒮
actergie:
kg·m2·s−1, N·m·s, J·s
MT−2 druk: p
mechanische spanning: 
energiedichtheid: U
kg·m−1·s−2, N·m−2, J·m−3, Pa
oppervlaktespanning: of
kg·s−2, N·m−1, J·m−2
kracht: F
gewicht: Fg
·kg·m·s−2, N
energie: E
arbeid: W
warmte: Q
kg·m2·s−2, Nm, J
ML2T−2 krachtmoment (torque): M, τ
kg·m2·s−2, Nm
energie: E
arbeid: W
warmte: Q
kg·m2·s−2, Nm, J
MT−3 yank (Engels): Y
kg·m·s−3, N·s−1
vermogen: P
kg·m2·s−3, W
ML2T−3 rotatum: P
kg·m2·s−3, N·m·s−1
vermogen: P
kg·m2 ·s−3, W
MT−4 tug (Engels): T
kg·m·s−4, N·s−2
MT−5 snatch (Engels): S
kg·m·s−5, N·s−3
MT−6 shake (Engels): Sh
kg·m·s−6, N·s−4
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.