Stoot (natuurkunde)

In de natuurkunde is de stoot of krachtstoot een grootheid gerelateerd aan de kracht en de tijdsduur van een botsing. Binnen de klassieke mechanica is stoot gedefinieerd als:

ofwel, de stoot is het product van kracht en tijdsduur als de kracht constant is. Dat is echter bijna nooit het geval, en dan is het beter om te schrijven dat de stoot de integraal is over kracht maal tijd:

met

Bij botsingen kan stoot in impuls worden omgezet volgens

ofwel:

De eenheid van stoot is dezelfde als die van impuls: Ns, Newton seconde, of in het SI-stelsel kg m/s.

De Engelse vertaling van stoot is impulse, terwijl de vertaling van het Nederlandse impuls het Engelse momentum is.

De specifieke stoot is een maat voor de efficiëntie van een raket- of straalmotor. Het is per definitie de opgewekte stoot per eenheid stuwstof of, hetzelfde, de opgewekte stuwkracht per stuwstofverbruik, dit laatste in de zin van verbruik per tijdseenheid.

Grootheden en eenheden in de (klassieke) mechanica
lineaire/translatie grootheden
Wat meten tijdsintegralen? 'nabijheid' ('nearness') 'verheid' ('farness')
Dimensie L−1 1 L L2
T9 presrop (Engels)
m−1·s9
absrop (Engels)
m·s9
T8 presock (Engels)
m−1·s8
absock (Engels)
m·s8
T7 presop (Engels)
m−1·s7
absop (Engels)
m·s7
T6 presackle (Engels)
m−1·s6
absrackle (Engels)
m·s6
T5 presounce (Engels)
m−1·s5
absounce (Engels)
m·s5
T4 preserk (Engels)
m−1·s4
abserk (Engels): D
m·s4
T3 preseleration (Engels)
m−1·s3
abseleration (Engels): C
m·s3
hoek/rotatie grootheden
T2 presity (Engels)
m−1·s2
absity (Engels): B
m·s2
Dimensie 1 geen (m·m−1) geen (m2·m−2)
T presement (Engels)
m−1·s
tijd: t
s
absition/absement (Engels): A
m·s
T tijd: t
s
1 placement (Engels)
golfgetal
m−1
afgelegde weg: d
plaatsvector: r, s, x
afstand: s
m
oppervlakte: A
m2
1 hoek: θ
rad
ruimtehoek: Ω
rad2, sr
Wat meten tijdsafgeleiden? 'rasheid' ('swiftness')
T−1 frequentie: f
s−1, Hz
snelheid (scalar): v
snelheid (vector): v
m·s−1
kinematische viscositeit: ν
diffusiecoëfficiënt: D
specifiek impulsmoment: h
m2·s−1
T−1 frequentie: f
s−1, Hz
hoeksnelheid: ω, ω
rad·s−1
T−2 versnelling: a
m·s−2
verbrandingswarmte
geabsorbeerde dosis: D
radioactieve-dosisequivalent
m2·s−2, J·kg−1, Gy, Sv
T−2 hoekversnelling: α
rad·s−2
T−3 ruk: j
m·s−3
T−3 hoekruk: ζ
rad·s−3
T−4 jounce/snap (Engels): s
m·s−4
T−5 crackle (Engels): c
m·s−5
T−6 pop (Engels): Po
m·s−6
T−7 lock (Engels)
m·s−7
T−8 drop (Engels)
m·s−8
M lineaire dichtheid:
kg·m−1
massa: m
kg
ML2 massatraagheidsmoment: I
kg·m2
Wat meten tijdsafgeleiden? 'sterkheid' ('forceness')
MT−1 dynamische viscositeit: η
kg·m−1·s−1, N·m−2·s, Pa·s
impuls: p (momentum),
stoot: J, p (impulse)
kg·m·s−1, N·s
actie: 𝒮
actergie:
kg·m2·s−1, N·m·s, J·s
ML2T−1 impulsmoment (momentum angularis): L
kg·m2·s−1
actie: 𝒮
actergie:
kg·m2·s−1, N·m·s, J·s
MT−2 druk: p
mechanische spanning: 
energiedichtheid: U
kg·m−1·s−2, N·m−2, J·m−3, Pa
oppervlaktespanning: of
kg·s−2, N·m−1, J·m−2
kracht: F
gewicht: Fg
·kg·m·s−2, N
energie: E
arbeid: W
warmte: Q
kg·m2·s−2, Nm, J
ML2T−2 krachtmoment (torque): M, τ
kg·m2·s−2, Nm
energie: E
arbeid: W
warmte: Q
kg·m2·s−2, Nm, J
MT−3 yank (Engels): Y
kg·m·s−3, N·s−1
vermogen: P
kg·m2·s−3, W
ML2T−3 rotatum: P
kg·m2·s−3, N·m·s−1
vermogen: P
kg·m2 ·s−3, W
MT−4 tug (Engels): T
kg·m·s−4, N·s−2
MT−5 snatch (Engels): S
kg·m·s−5, N·s−3
MT−6 shake (Engels): Sh
kg·m·s−6, N·s−4
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.