Mitomycin C

Mitomycin C
Clinical data
Pregnancy
category
  • AU: D
  • US: D (Evidence of risk)
    Legal status
    Legal status
    Pharmacokinetic data
    Metabolism Hepatic
    Elimination half-life 8–48 min
    Identifiers
    CAS Number
    PubChem CID
    PubChem SID
    IUPHAR/BPS
    DrugBank
    ChemSpider
    UNII
    KEGG
    ChEBI
    ChEMBL
    ECHA InfoCard 100.000.008 Edit this at Wikidata
    Chemical and physical data
    Formula C15H18N4O5
    Molar mass 334.33 g·mol−1
    3D model (JSmol)
    Melting point 360 °C (680 °F)
    Solubility in water 8.43 g L−1 mg/mL (20 °C)

    Mitomycin C is a mitomycin that is used as a chemotherapeutic agent by virtue of its antitumour activity. It is given intravenously to treat upper gastro-intestinal cancers (e.g. esophageal carcinoma), anal cancers, and breast cancers, as well as by bladder instillation for superficial bladder tumours. It causes delayed bone marrow toxicity and therefore it is usually administered at 6-weekly intervals. Prolonged use may result in permanent bone-marrow damage. It may also cause lung fibrosis and renal damage.

    Mitomycin C has also been used topically rather than intravenously in several areas. The first is cancers, particularly bladder cancers and intraperitoneal tumours. It is now well known that a single instillation of this agent within 6 hours of bladder tumor resection can prevent recurrence. The second is in eye surgery where mitomycin C 0.02% is applied topically to prevent scarring during glaucoma filtering surgery and to prevent haze after PRK or LASIK; mitomycin C has also been shown to reduce fibrosis in strabismus surgery.[1] The third is in esophageal and tracheal stenosis where application of mitomycin C onto the mucosa immediately following dilatation will decrease re-stenosis by decreasing the production of fibroblasts and scar tissue.

    Mitomycin C is a potent DNA crosslinker. A single crosslink per genome has shown to be effective in killing bacteria. This is accomplished by reductive activation of mitomycin to form a mitosene, which reacts successively via N-alkylation of two DNA bases. Both alkylations are sequence specific for a guanine nucleoside in the sequence 5'-CpG-3'.[2] Potential bis-alkylating heterocylic quinones were synthetised in order to explore their antitumoral activities by bioreductive alkylation.[3] Mitomycin is also used as a chemotherapeutic agent in glaucoma surgery.

    Mitomycin was discovered in the 1950s by Japanese scientists in cultures of the microorganism Streptomyces caespitosus. [2]

    References

    1. Kersey JP, Vivian AJ (Jul–Sep 2008). "Mitomycin and amniotic membrane: a new method of reducing adhesions and fibrosis in strabismus surgery". Strabismus. pp. 116–118. doi:10.1080/09273970802405493. PMID 18788060. Missing or empty |url= (help)
    2. 1 2 Tomasz, Maria (September 1995). "Mitomycin C: small, fast and deadly (but very selective)". Chemistry and Biology. 2 (9): 575–579. doi:10.1016/1074-5521(95)90120-5. PMID 9383461.
    3. Renault, J.; Baron, M; Mailliet, P.; et al. (1981). "Heterocyclic quinones 2. Quinoxaline-5,6-(and 5-8)-diones - Potential antitumoral agents". Eur. J. Med. Chem. 16 (6): 545–550.

    See also

    Aziridine

    This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.