Chipaque Formation

The Chipaque Formation (Spanish: Formación Chipaque, K2cp, Kc) is a geological formation of the Altiplano Cundiboyacense, Eastern Ranges of the Colombian Andes. The formation is also described as Gachetá Formation, named after Gachetá, in the area of the Llanos foothills of the Eastern Ranges. The predominantly organic shale formation dates to the Late Cretaceous period; Cenomanian-Turonian epochs and has a maximum thickness of 1,700 metres (5,600 ft). The formation, rich in TOC, is an important oil and gas generating unit for the giant oilfields Cupiagua and Cusiana of the Eastern Ranges as well as in the Llanos Orientales.

Chipaque Formation
Stratigraphic range: Cenomanian-Turonian
~97–90 Ma
TypeGeological formation
Unit ofVilleta Group
UnderliesGuadalupe Gp
 Arenisca Dura Fm
OverliesUne Formation
Thicknessup to 1,700 metres (5,580 ft)
Lithology
PrimaryOrganic shale
OtherSandstone, limestone, siltstone
Location
Coordinates4°27′07″N 74°03′20″W
RegionAltiplano Cundiboyacense
Eastern Ranges, Andes
Country Colombia
Type section
Named forChipaque
Named byHubach
LocationChipaque
Year defined1957
Coordinates4°27′07″N 74°03′20″W
RegionCundinamarca, Boyacá
Country Colombia
Thickness at type section1,027 metres (3,370 ft)

Paleogeography of Northern South America
90 Ma, by Ron Blakey

Etymology

The formation was named in 1931 as group and as formation in 1957 by Hubach after Chipaque, Cundinamarca.[1]

Description

Lithologies

The Chipaque Formation with a maximum thickness of 1,700 metres (5,600 ft), is characterised by a sequence of pyritic organic shales, limestones and siltstones, with sandstone banks intercalated in the formation.[2] The Chipaque Formation contains a high density of fauna.[1] The formation is rich in TOC and one of the principal source rocks for oil and gas generation in the foothills of the Eastern Ranges,[3] sourcing fields as Cusiana, Cupiagua and many others.[4] Chipaque also sourced the oilfields of the Llanos Orientales.[5] In the Chitasugá-1 well, drilled between 1980 and 1981, from the sandstones of the Chipaque Formation half a million m³ of water were produced.[6] The sandstone beds are reservoir rocks for oil in the Eastern Ranges.[3]

Stratigraphy and depositional environment

The Chipaque Formation overlies the Une Formation and is overlain by the Guadalupe Group. The core of the Zipaquirá Anticline consists of the Chipaque Formation.[7] The age has been estimated to be Cenomanian-Turonian.[1] Stratigraphically, the formation is time equivalent with the Simijaca Formation.[8] The formation has been deposited in an open to shallow marine platform setting.[9] The deposition is represented by a maximum flooding surface and anoxic conditions.[10]

Outcrops

Type locality of the Chipaque Formation to the south of the Bogotá savanna

The Chipaque Formation is apart from its type locality, found in the Eastern Hills of Bogotá, the Ocetá Páramo and many other locations in the Eastern Ranges. The anticlinals of the Río Blanco-Machetá, San José and Sopó-Sesquilé are composed of the Chipaque Formation.[1]

Regional correlations

Cretaceous stratigraphy of the central Colombian Eastern Ranges
AgePaleomapVMMGuaduas-VélezW Emerald BeltVilleta anticlinalChiquinquirá-
Arcabuco
Tunja-
Duitama
Altiplano CundiboyacenseEl Cocuy
MaastrichtianUmirCórdobaSecaerodedGuaduasColón-Mito Juan
UmirGuadalupe
CampanianCórdoba
Oliní
SantonianLa LunaCimarrona - La TablaLa Luna
ConiacianOliníConejoChipaque
Güagüaquí
Loma GordaundefinedLa Frontera
TuronianHonditaLa FronteraOtanche
CenomanianSimitíhiatusLa CoronaSimijacaCapacho
Pacho Fm.Hiló - PachoChuruvitaUneAguardiente
AlbianHilóChiquinquiráTibasosaUne
TablazoTablazoCapotes - La Palma - SimitíSimitíTibú-Mercedes
AptianCapotesSocotá - El PeñónPajaFómeque
PajaPajaEl PeñónTrincherasRío Negro
La Naveta
Barremian
HauterivianMuzo
Cáqueza
Las Juntas
RosablancaRitoque
ValanginianRitoqueFuratenaÚtica - MurcaRosablancaGirónMacanal
Rosablanca
BerriasianCumbreCumbreLos MediosGuavio
TamborArcabucoCumbre
Sources
Stratigraphy of the Llanos Basin and surrounding provinces
MaAgePaleomapRegional eventsCatatumboCordilleraproximal Llanosdistal LlanosPutumayoVSMEnvironmentsMaximum thicknessPetroleum geologyNotes
0.01Holocene
Holocene volcanism
Seismic activity
alluviumOverburden
1Pleistocene
Pleistocene volcanism
Andean orogeny 3
Glaciations
GuayaboSoatá
Sabana
NecesidadGuayaboGigante
Neiva
Alluvial to fluvial (Guayabo)550 m (1,800 ft)
(Guayabo)
[11][12][13][14]
2.6Pliocene
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3MessinianAndean orogeny 3
Foreland
MarichuelaCaimánHonda[13][15]
13.5LanghianRegional floodingLeónhiatusCajaLeónLacustrine (León)400 m (1,300 ft)
(León)
Seal[14][16]
16.2BurdigalianMiocene inundations
Andean orogeny 2
C1Carbonera C1OspinaProximal fluvio-deltaic (C1)850 m (2,790 ft)
(Carbonera)
Reservoir[15][14]
17.3C2Carbonera C2Distal lacustrine-deltaic (C2)Seal
19C3Carbonera C3Proximal fluvio-deltaic (C3)Reservoir
21Early MiocenePebas wetlandsC4Carbonera C4BarzalosaDistal fluvio-deltaic (C4)Seal
23Late Oligocene
Andean orogeny 1
Foredeep
C5Carbonera C5OritoProximal fluvio-deltaic (C5)Reservoir[12][15]
25C6Carbonera C6Distal fluvio-lacustrine (C6)Seal
28Early OligoceneC7C7PepinoGualandayProximal deltaic-marine (C7)Reservoir[12][15][17]
32Oligo-EoceneC8UsmeC8onlapMarine-deltaic (C8)Seal
Source
[17]
35Late Eocene
MiradorMiradorCoastal (Mirador)240 m (790 ft)
(Mirador)
Reservoir[14][18]
40Middle EoceneRegaderahiatus
45
50Early Eocene
SochaLos CuervosDeltaic (Los Cuervos)260 m (850 ft)
(Los Cuervos)
Seal
Source
[14][18]
55Late PaleocenePETM
2000 ppm CO2
Los CuervosBogotáGualanday
60Early PaleoceneSALMABarcoGuaduasBarcoRumiyacoFluvial (Barco)225 m (738 ft)
(Barco)
Reservoir[11][12][15][14][19]
65Maastrichtian
KT extinctionCatatumboGuadalupeMonserrateDeltaic-fluvial (Guadalupe)750 m (2,460 ft)
(Guadalupe)
Reservoir[11][14]
72CampanianEnd of riftingColón-Mito Juan[14][20]
83SantonianVilleta/Güagüaquí
86Coniacian
89TuronianCenomanian-Turonian anoxic eventLa LunaChipaqueGachetáhiatusRestricted marine (all)500 m (1,600 ft)
(Gachetá)
Source[11][14][21]
93Cenomanian
Rift 2
100AlbianUneUneCaballosDeltaic (Une)500 m (1,600 ft)
(Une)
Reservoir[15][21]
113Aptian
CapachoFómequeMotemaYavíOpen marine (Fómeque)800 m (2,600 ft)
(Fómeque)
Source (Fóm)[12][14][22]
125BarremianHigh biodiversityAguardientePajaShallow to open marine (Paja)940 m (3,080 ft)
(Paja)
Reservoir[11]
129Hauterivian
Rift 1Tibú-
Mercedes
Las JuntashiatusDeltaic (Las Juntas)910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun)[11]
133ValanginianRío NegroCáqueza
Macanal
Rosablanca
Restricted marine (Macanal)2,935 m (9,629 ft)
(Macanal)
Source (Mac)[12][23]
140BerriasianGirón
145TithonianBreak-up of PangeaJordánArcabucoBuenavista
Batá
SaldañaAlluvial, fluvial (Buenavista)110 m (360 ft)
(Buenavista)
"Jurassic"[15][24]
150Early-Mid Jurassic
Passive margin 2La Quinta
Montebel

Noreán
hiatusCoastal tuff (La Quinta)100 m (330 ft)
(La Quinta)
[25]
201Late Triassic
MucuchachiPayandé[15]
235Early Triassic
Pangeahiatus"Paleozoic"
250Permian
300Late Carboniferous
Famatinian orogenyCerro Neiva
()
[26]
340Early CarboniferousFossil fish
Romer's gap
Cuche
(355-385)
Farallones
()
Deltaic, estuarine (Cuche)900 m (3,000 ft)
(Cuche)
360Late Devonian
Passive margin 1Río Cachirí
(360-419)
Ambicá
()
Alluvial-fluvial-reef (Farallones)2,400 m (7,900 ft)
(Farallones)
[23][27][28][29][30]
390Early Devonian
High biodiversityFloresta
(387-400)
El Tíbet
Shallow marine (Floresta)600 m (2,000 ft)
(Floresta)
410Late SilurianSilurian mystery
425Early Silurianalign=centercolspan=6 bgcolor=darkgrey align=center | hiatus
440Late Ordovician
Rich fauna in BoliviaSan Pedro
(450-490)
Duda
()
470Early OrdovicianFirst fossilsBusbanzá
(>470±22)
Chuscales
Otengá
Guape
()
Río Nevado
()
Hígado
()
Agua Blanca
Venado
(470-475)
[31][32][33]
488Late Cambrian
Regional intrusionsChicamocha
(490-515)
Quetame
()
Ariarí
()
SJ del Guaviare
(490-590)
San Isidro
()
[34][35]
515Early CambrianCambrian explosion[33][36]
542Ediacaran
Break-up of Rodiniapre-Quetamepost-ParguazaEl Barro
()
Yellow: allochtonous basement
(Chibcha Terrane)
Green: autochtonous basement
(Río Negro-Juruena Province)
Basement[37][38]
600Neoproterozoic
Cariri Velhos orogenyBucaramanga
(600-1400)
pre-Guaviare[34]
800
Snowball Earth[39]
1000Mesoproterozoic
Sunsás orogenyAriarí
(1000)
La Urraca
(1030-1100)
[40][41][42][43]
1300Rondônia-Juruá orogenypre-AriaríParguaza
(1300-1400)
Garzón
(1180-1550)
[44]
1400
pre-Bucaramanga[45]
1600PaleoproterozoicMaimachi
(1500-1700)
pre-Garzón[46]
1800
Tapajós orogenyMitú
(1800)
[44][46]
1950Transamazonic orogenypre-Mitú[44]
2200Columbia
2530Archean
Carajas-Imataca orogeny[44]
3100Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]

See also

Geology of the Eastern Hills
Geology of the Ocetá Páramo
Geology of the Altiplano Cundiboyacense

Notes and references

Notes

  1. based on Duarte et al. (2019)[47], García González et al. (2009),[48] and geological report of Villavicencio[49]
  2. based on Duarte et al. (2019)[47] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[50]

References

  1. Montoya Arenas & Reyes Torres, 2005, p.26
  2. Lobo Guerrero, 1992, p.4
  3. García González et al., 2009, p.49
  4. Cortés et al., 2009, p.4
  5. García González et al., 2009, p.58
  6. Lobo Guerrero, 1993, p.20
  7. García & Jiménez, 2016, p.24
  8. Montoya Arenas & Reyes Torres, 2005, p.22
  9. García González et al., 2009, p.209
  10. Villamil, 2012, p.164
  11. García González et al., 2009, p.27
  12. García González et al., 2009, p.50
  13. García González et al., 2009, p.85
  14. Barrero et al., 2007, p.60
  15. Barrero et al., 2007, p.58
  16. Plancha 111, 2001, p.29
  17. Plancha 177, 2015, p.39
  18. Plancha 111, 2001, p.26
  19. Plancha 111, 2001, p.24
  20. Plancha 111, 2001, p.23
  21. Pulido & Gómez, 2001, p.32
  22. Pulido & Gómez, 2001, p.30
  23. Pulido & Gómez, 2001, pp.21-26
  24. Pulido & Gómez, 2001, p.28
  25. Correa Martínez et al., 2019, p.49
  26. Plancha 303, 2002, p.27
  27. Terraza et al., 2008, p.22
  28. Plancha 229, 2015, pp.46-55
  29. Plancha 303, 2002, p.26
  30. Moreno Sánchez et al., 2009, p.53
  31. Mantilla Figueroa et al., 2015, p.43
  32. Manosalva Sánchez et al., 2017, p.84
  33. Plancha 303, 2002, p.24
  34. Mantilla Figueroa et al., 2015, p.42
  35. Arango Mejía et al., 2012, p.25
  36. Plancha 350, 2011, p.49
  37. Pulido & Gómez, 2001, pp.17-21
  38. Plancha 111, 2001, p.13
  39. Plancha 303, 2002, p.23
  40. Plancha 348, 2015, p.38
  41. Planchas 367-414, 2003, p.35
  42. Toro Toro et al., 2014, p.22
  43. Plancha 303, 2002, p.21
  44. Bonilla et al., 2016, p.19
  45. Gómez Tapias et al., 2015, p.209
  46. Bonilla et al., 2016, p.22
  47. Duarte et al., 2019
  48. García González et al., 2009
  49. Pulido & Gómez, 2001
  50. García González et al., 2009, p.60

Bibliography

  • García, Helbert, and Giovanny Jiménez. 2016. Structural analysis of the Zipaquirá Anticline (Eastern Cordillera, Colombia). Boletín de Ciencias de la Tierra, Universidad Nacional de Colombia 39. 21–32.
  • Schütz, Christian. 2012. Combined structural and Petroleum Systems Modeling in the Eastern Cordillera Basin, Colombia (MSc. thesis), 1–161. Rheinisch-Westfälische Technische Hochschule Aachen & Instituto Colombiano del Petróleo.
  • Villamil, Tomas. 2012. Chronology Relative Sea Level History and a New Sequence Stratigraphic Model for Basinal Cretaceous Facies of Colombia, 161–216. Society for Sedimentary Geology (SEPM).
  • Cortés, Martín; Diego García; Germán Bayona, and Yolima Blanco. 2009. Timing of oil generation in the Eastern flank of the Eastern Cordillera of Colombia based on kinematic models; implications in the Llanos Foothills and Foreland charge, 1–8. Asociación Colombiana de Geólogos y Geofisicos del Petróleo (ACGGP).
  • García González, Mario; Ricardo Mier Umaña; Luis Enrique Cruz Guevara, and Mauricio Vásquez. 2009. Informe Ejecutivo - evaluación del potencial hidrocarburífero de las cuencas colombianas, 1–219. Universidad Industrial de Santander.
  • Montoya Arenas, Diana María, and Germán Alfonso Reyes Torres. 2005. Geología de la Sabana de Bogotá, 1–104. INGEOMINAS.
  • Guerrero Uscátegui, Alberto Lobo. 1993. Informe sobre la Cuenca Petrolífera de la Sabana de Bogotá, Colombia, 1–29.
  • Guerrero Uscátegui, Alberto Lobo. 1992. Geología e Hidrogeología de Santafé de Bogotá y su Sabana, 1–20. Sociedad Colombiana de Ingenieros.

Reports

  • Reyes, Germán; Diana Montoya; Roberto Terraza; Jaime Fuquen; Marcela Mayorga; Tatiana Gaona, and Fernando Etayo. 2008. Geología del cinturón esmeraldífero oriental Planchas 210, 228, 229, 1−126. INGEOMINAS.
  • Acosta Garay, Jorge, and Carlos E. Ulloa Melo. 2001. Geología de la Plancha 227 - La Mesa - 1:100,000, 1–80. INGEOMINAS.
  • Terraza, Roberto; Diana Montoya; Germán Reyes; Giovanni Moreno; Jaime Fúquen; Eliana Torres Jaimes; Myriam López Cardona; Álvaro Nivia Guevara, and Fernando Etayo Serna. 2013. Geología de la Plancha 229 - Gachalá - 1:100,000, 1–296. Servicio Geológico Colombiano. Accessed 2018-06-01.
  • Patiño, Alejandro; Jaime Fuquen; Julián Ramos; Andrea Pedraza; Leonardo Ceballos; Lyda Pinzón; Yadira Jerónimo; Leidy Álvarez, and Andrea Torres. 2011. Cartografía geológica de la Plancha 247 - Cáqueza - 1:100,000, 1–100. INGEOMINAS. Accessed 2017-08-04.

Maps

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.