Taxifolin

Taxifolin
Names
IUPAC name
(2R,3R)-2-(3,4-Dihydroxyphenyl)-3,5,7-trihydroxy-2,3-dihydrochromen-4-one
Other names
Dihydroquercetin
Taxifoliol
Distylin
Catechin hydrate
(+)-Taxifolin
trans-Dihydroquercetin
(+)-Dihydroquercetin
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.006.859
EC Number 207-543-4
KEGG
UNII
Properties
C15H12O7
Molar mass 304.25 g·mol−1
Appearance Brown powder
Melting point 237 °C (459 °F; 510 K)[1]
UV-vismax) 290, 327 nm (methanol)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is ☑Y☒N ?)
Infobox references

Taxifolin is a flavanonol, a type of flavonoid.

Natural occurrences

It can be found in conifers like the Siberian larch, Larix sibirica, in Russia, in Pinus roxburghii,[2] in Cedrus deodara[2] and in the Chinese yew, Taxus chinensis var. mairei.[3]

It is also found in the silymarin extract from the milk thistle seeds.

Taxifolin is present in vinegars aged in cherry wood.[4]

Taxifolin, and flavonoids in general, can be found in many beverages and products. Specifically, taxifolin is found in plant-based foods like fruit, vegetables, wine, tea, and cocoa.[5]

Pharmacology

Taxifolin is not mutagenic and less toxic than the related compound quercetin.[6] It acts as a potential chemopreventive agent by regulating genes via an ARE-dependent mechanism.[7] Taxifolin has shown to inhibit the ovarian cancer cell growth in a dose-dependent manner.[8] However, in this same study, taxifolin was the least effective flavonoid in the inhibition of VEGF expression. [9]. There is also a strong correlation (with a correlation coefficient of 0.93) between the antiproliferative effects of dihydroquercetin (DHQ, Taxifolin) derivatives on murine skin fibroblasts and human breast cancer cells.[10]

Taxifolin has shown to have anti-proliferative effects on many types of cancer cells by inhibiting cancer cell lipogenesis. By inhibiting the fatty acid synthase in cancer cells, taxifolin is able to prevent the growth and spread of cancer cells. [11]

The capacity of taxifolin to stimulate fibril formation and promote stabilization of fibrillar forms of collagen can be used in medicine.[12] Also taxifolin inhibited the cellular melanogenesis as effectively as arbutin, one of the most widely used hypopigmenting agents in cosmetics. However, arbutin acts as quercetin extremely mutagenic, carcinogenic and toxic.[13]

Taxifolin enhanced also the efficacy of conventional antibiotics like levofloxacin and ceftazidime in vitro, which have potential for combinatory therapy of patients infected with methicillin-resistant Staphylococcus aureus (MRSA).[14]

Taxifolin, as well as many other flavonoids, has been found to act as a non-selective antagonist of the opioid receptors, albeit with somewhat weak affinity.[15]

Taxifolin has been found to act as an agonist of the adiponectin receptor 2 (AdipoR2).[16]

Metabolism

The enzyme taxifolin 8-monooxygenase uses taxifolin, NADH, NADPH, H+, and O2 to produce 2,3-dihydrogossypetin, NAD+, NADP+, and H2O.

The enzyme leucocyanidin oxygenase uses leucocyanidin, 2-oxoglutarate, and O2 to produce cis-dihydroquercetin, taxifolin, succinate, CO2, and H2O.

Glycosides

Astilbin is the 3-O-rhamnoside of taxifolin. Taxifolin deoxyhexose can be found in açai fruits.[17]

Taxifolin 3-O-glucoside isomers have been separated from Chamaecyparis obtusa.[18]

(-)-2,3-trans-Dihydroquercetin-3'-O-β-D-glucopyranoside, a taxifolin glucoside has been extracted from the inner bark of Pinus densiflora and can act as an oviposition stimulant in the cerambycid beetle Monochamus alternatus.[19]

(2S,3S)-(-)-Taxifolin-3-O-β-D-glucopyranoside has been isolated from the root-sprouts of Agrimonia pilosa.[20]

(2R,3R)-Taxifolin-3'-O-β-D-pyranoglucoside has been isolated from the rhizome of Smilax glabra.[21]

Minor amount of taxifolin 4′-O-β-glucopyranoiside can be found in red onions.[22]

(2R,3R)-Taxifolin 3-O-arabinoside and (2S,3S)-taxifolin 3-O-arabinoside have been isolated from the leaves of Trachelospermum jasminoides[23] (star jasmine).

Chemistry

(+)-Leucocyanidin can be synthesized from taxifolin by sodium borohydride reduction.[24]

References

  1. Graham, H. M.; Kurth, E. F. (1949). "Constituents of Extractives from Douglas Fir". Industrial and Engineering Chemistry. 41 (2): 409–414. doi:10.1021/ie50470a035.
  2. 1 2 Extractives in bark of different conifer species growing in Pakistan. Willför S, Mumtaz Ali, Karonen M, Reunanen M, Mohammad Arfan and Harlamow R, Holzforschung, 2009, Volume 63, Number 5, pages 551-558, doi:10.1515/HF
  3. Chemistry of Chinese yew, Taxus chinensis var. mairei. Cunfang Li, Changhong Huo , Manli Zhang, Qingwen Shi, Biochemical Systematics and Ecology, Volume 36, Issue 4, April 2008, Pages 266–282, doi:10.1016/j.bse.2007.08.002
  4. Cerezoa, Ana B.; Tesfayea, Wendu; Soria-Díazb, M.E.; Torijac, M. Jesús; Mateoc, Estíbaliz; Garcia-Parrillaa, M. Carmen; Troncosoa, Ana M. (2010). "Effect of wood on the phenolic profile and sensory properties of wine vinegars during ageing". Journal of Food Composition and Analysis. 23 (2): 175–184. doi:10.1016/j.jfca.2009.08.008.
  5. Brusselmans, K.; Vrolix, R.; Verhoeven, G.; Swinnen, J. Induction of Cancer Cell Apoptosis by Flavonoids Is Associated with Their Ability to Inhibit Fatty Acid Synthase Activity. JBC: the Journal of Biological Chemistry 2005, 280, 5636-5645.
  6. Makena, Patrudu S.; Pierce, Samuel C.; Chung, King-Thom; Sinclair, Scott E. (2009). "Comparative mutagenic effects of structurally similar flavonoids quercetin and taxifolin on tester strains Salmonella typhimurium TA102 and Escherichia coli WP-2 uvrA". Environmental and Molecular Mutagenesis. 50 (6): 451–9. doi:10.1002/em.20487. PMID 19326464.
  7. Lee, Saet Byoul; Cha, Kwang Hyun; Selenge, Dangaa; Solongo, Amgalan; Nho, Chu Won (2007). "The Chemopreventive Effect of Taxifolin Is Exerted through ARE-Dependent Gene Regulation". Biological & Pharmaceutical Bulletin. 30 (6): 1074–9. doi:10.1248/bpb.30.1074.
  8. Luo, Haitao; Jiang, Bing-Hua; King, Sarah; Chen, Yi Charlie (2008). "Inhibition of Cell Growth and VEGF Expression in Ovarian Cancer Cells by Flavonoids". Nutrition and Cancer. 60 (6): 800–9. doi:10.1080/01635580802100851. PMID 19005980.
  9. (1) Luo, H.; Jiang, B.; King, S. M.; Chen, Y. C. Inhibition of Cell Growth and VEGF Expression in Ovarian Cancer Cells by Flavonoids. Nutr. Cancer 2008, 60, 800-809.
  10. Rogovskiĭ VS, Matiushin AI, Shimanovskiĭ NL, Semeĭkin AV, Kukhareva TS, Koroteev AM, Koroteev MP, Nifant'ev EE (2010). "[Antiproliferative and antioxidant activity of new dihydroquercetin derivatives]". Eksp Klin Farmakol (in Russian). 73 (9): 39–42. PMID 21086652.
  11. Brusselmans, K.; Vrolix, R.; Verhoeven, G.; Swinnen, J. Induction of Cancer Cell Apoptosis by Flavonoids Is Associated with Their Ability to Inhibit Fatty Acid Synthase Activity. JBC: the Journal of Biological Chemistry 2005, 280, 5636-5645.
  12. Tarahovsky, Y. S.; Selezneva, I. I.; Vasilieva, N. A.; Egorochkin, M. A.; Kim, Yu. A. (2007). "Acceleration of fibril formation and thermal stabilization of collagen fibrils in the presence of taxifolin (dihydroquercetin)". Bulletin of Experimental Biology and Medicine. 144 (6): 791–4. doi:10.1007/s10517-007-0433-z. PMID 18856203.
  13. An, Sang Mi; Kim, Hyo Jung; Kim, Jung-Eun; Boo, Yong Chool (2008). "Flavonoids, taxifolin and luteolin attenuate cellular melanogenesis despite increasing tyrosinase protein levels". Phytotherapy Research. 22 (9): 1200–7. doi:10.1002/ptr.2435. PMID 18729255.
  14. An J, Zuo GY, Hao XY, Wang GC, Li ZS (August 2011). "Antibacterial and synergy of a flavanonol rhamnoside with antibiotics against clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA)". Phytomedicine. 18 (11): 990–3. doi:10.1016/j.phymed.2011.02.013. PMID 21466953.
  15. Katavic PL, Lamb K, Navarro H, Prisinzano TE (August 2007). "Flavonoids as opioid receptor ligands: identification and preliminary structure-activity relationships". J. Nat. Prod. 70 (8): 1278–82. doi:10.1021/np070194x. PMC 2265593. PMID 17685652.
  16. Sun Y, Zang Z, Zhong L, Wu M, Su Q, Gao X, Zan W, Lin D, Zhao Y, Zhang Z (2013). "Identification of adiponectin receptor agonist utilizing a fluorescence polarization based high throughput assay". PLoS ONE. 8 (5): e63354. doi:10.1371/journal.pone.0063354. PMC 3653934. PMID 23691032.
  17. Polyphenolic Constituents of Fruit Pulp of Euterpe oleracea Mart. (Açai palm). S. Gallori, A. R. Bilia, M. C. Bergonzi, W. L. R. Barbosa and F. F. Vincieri, Chromatographia, June 2004, Volume 59, Issue 11-12, pages 739-743, doi:10.1365/s10337-004-0305-x
  18. Sakushima, Akiyo; Ohno, Kosei; Coskun, Makusut; Seki, Koh-Ichi; Ohkura, Kazue (2002). "Separation and Identification of Taxifolin 3- O -Glucoside Isomers from Chamaecyparis Obtusa (Cupressaceae)". Natural Product Research. 16 (6): 383–7. doi:10.1080/10575630290033141.
  19. Sato, Masashi; Islam, Syed Q.; Awata, Shinobu; Yamasaki, Tory (1999). "Flavanonol glucoside and proanthocyanidins: Oviposition stimulants for the cerambycid beetle, Monochamus alternatus" (PDF). Journal of Pesticide Science. 24 (2): 123–9. doi:10.1584/jpestics.24.123. Archived from the original (PDF) on 2011-07-22.
  20. Pei YH, Li X, Zhu TR, Wu LJ (1990). "[Studies on the structure of a new flavanonol glucoside of the root-sprouts of Agrimonia pilosa Ledeb]". Yao Xue Xue Bao (in Chinese). 25 (4): 267–70. PMID 2281787.
  21. Yuan JZ, Dou DQ, Chen YJ, et al. (September 2004). "[Studies on dihydroflavonol glycosides from rhizome of Smilax glabra]". Zhongguo Zhong Yao Za Zhi (in Chinese). 29 (9): 867–70. PMID 15575206.
  22. Flavonoids from red onion (Allium cepa). Torgils Fossen, Atle T. Pedersen and Øyvind M. Andersen, Phytochemistry, January 1998, Volume 47, Issue 2, Pages 281–285, doi:10.1016/S0031-9422(97)00423-8
  23. Hosoi, Shinzo; Shimizu, Eri; Ohno, Kosei; Yokosawa, Ryozo; Kuninaga, Shiro; Coskun, Maksut; Sakushima, Akiyo (2006). "Structural Studies of Zoospore Attractants from Trachelospermum jasminoides var. pubescens: Taxifolin 3-O-glycosides". Phytochemical Analysis. 17 (1): 20–4. doi:10.1002/pca.876. PMID 16454472.
  24. Heller, Werner; Britsch, Lothar; Forkmann, Gert; Grisebach, Hans (1985). "Leucoanthocyanidins as intermediates in anthocyanidin biosynthesis in flowers of Matthiola incana R. Br". Planta. 163 (2): 191–6. doi:10.1007/BF00393505. PMID 24249337.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.