Kerncentrale

Een kerncentrale is een elektriciteitscentrale die elektriciteit opwekt met de energie die vrijkomt bij kernsplijting. Net zoals bij andere soorten elektriciteitscentrales wordt met deze splijtingswarmte stoom opgewekt die een turbine aandrijft. De mechanische energie in deze turbine wordt dan via een alternator omgezet in elektrische energie.

Kerncentrale Civaux in Frankrijk te Civaux, Vienne. Een koeltoren en twee koepels van reactoren zijn zichtbaar vanaf het parkeerterrein.
Overzicht van de kerncentrales in de wereld

Volgens het IAEA waren er op 1 januari 2018 in 30 verschillende landen ter wereld samen 448 kernreactoren in exploitatie, en meer dan 60 in aanleg, vooral in Azië.[1] Hiervan zijn er een honderdtal in de VS en 58 in Frankrijk. Het totale geïnstalleerde vermogen is 392 gigawatt. In 2012 was ongeveer 10% van de mondiale elektriciteitsproductie van nucleaire oorsprong.

Principe

In een kerncentrale maakt men gebruik van de 'brandstof' uranium (vaak aangevuld met plutonium, hetzij gevormd in de reactor zelf door uranium-238, hetzij in de vorm van MOX-brandstof waarin plutonium is gerecycleerd) om warmte te genereren. Hiermee produceert men stoom om via een turbine een elektrische generator aan te drijven. Bij het splijten van uranium komt een grote hoeveelheid warmte vrij. Dit splijtingsproces vindt plaats in de kernreactor van de centrale. Voor het splijtingsproces in een kernreactor wordt meestal een specifieke isotoop van uranium gebruikt: uranium-235. In natuurlijk uranium zit gemiddeld 0,7% van dit uranium-235. De meeste kernreactoren hebben uranium nodig waarin minstens drie procent uranium-235 aanwezig is. De tussenstap die hiervoor nodig is, heet verrijking. Het is ook mogelijk om uranium-238, plutonium of thorium te splijten.

Het verrijkte uranium, waarin veelal nog meer dan 95 procent uranium-238 zit, komt in dichtgelaste staven in de reactor. Dit zijn de zogenoemde splijtstofstaven. De atoomkern van uranium-235 kan gemakkelijk worden gespleten wanneer het een neutron absorbeert. Het atoom valt uit elkaar in brokstukken (splijtingsproducten) en zendt daarbij ook neutronen uit. De neutronen kunnen bij een ander atoom uranium-235 een nieuwe kernsplijting veroorzaken. Daarbij ontstaan opnieuw warmte en enkele neutronen, die elk weer een nieuw atoom kunnen raken. Zo ontstaat een kettingreactie. Alle splijtingen samen zorgen ervoor dat een kerncentrale kan draaien.

De term 'thermische' reactor slaat niet op het feit dat elektriciteit uit warmte wordt geproduceerd, maar op de thermische neutronen. Deze term impliceert dat de neutronen in de reactor worden afgeremd totdat ze kunnen worden opgevangen door de U-235-atoomkernen in de brandstofelementen. Dit afremmen gebeurt door een zogenaamde moderator. Een moderator is bij voorkeur een stof die bestaat uit lichte atomen, zoals water, zwaar water of koolstof (grafiet). Doordat de neutronen tegen deze lichte atomen botsen, remmen ze af van ongeveer 10% van de lichtsnelheid tot een paar kilometer per seconde. Deze 'langzame' neutronen hebben een snelheidsverdeling die meer lijkt op de 'thermische' maxwellverdeling. De U-235-atoomkernen kunnen de snelle neutronen niet opvangen; de langzame worden wel opgevangen, en zorgen dat de U-235-atomen splijten. Een thermische reactor draait dus voornamelijk op direct splijtbare atomen als brandstof. Om ook U-238 (efficiënt) als brandstof te gebruiken is een 'snelle' reactor nodig, waarbij de snelle neutronen worden ingevangen in het U-238 om de eveneens splijtbare isotoop plutonium-239 te vormen.

Koeling

Net zoals andere thermische elektriciteitscentrales, hebben kerncentrales koeling nodig. Omdat er voor de veiligheid twee gescheiden koelsystemen zijn (het primaire systeem dat de reactor koelt en het secundaire systeem dat op het buitenwater loost), is er echter voor kerncentrales naar verhouding meer koeling nodig in vergelijking met reguliere thermische centrales. Omwille van de grote behoefte aan koelwater zijn kerncentrales vaak in de omgeving van rivieren gelegen, of aan zee. Door de opwarming van de Aarde kan de temperatuur van dat omgevingswater in die mate stijgen dat de reactor tijdelijk moet vertraagd, of zelfs stilgelegd worden, omdat een efficiënte koeling moeilijker wordt en/of omdat het warmere water het leven van planten en dieren in de rivieren bedreigt. De trend gaat in stijgende lijn: in de Verenigde Staten werd in de jaren 1980 en 1990 doorgaans hooguit één dergelijk incident per jaar gemeld; in 2009 waren het er 9, in 2012 al meer dan 60, volgens een rapport van de Nuclear Regulatory Commission.[2]

Geschiedenis

De eerste gloeilampen die op elektriciteit van de kerncentrale EBR-1 (nu Idaho National Laboratory) brandden.
De kerncentrale van 1957 te Shippingport, Pennsylvania was de eerste commerciële reactor in de VS.

Op 2 december 1942 was de eerste gecontroleerde nucleaire kettingreactie, in de eerste kernreactor, de Chicago Pile 1.

In een experimentele reactor in Idaho (Verenigde Staten van Amerika) werd op 20 december 1951 voor het eerst elektriciteit opgewekt met kernenergie. De eerste kerncentrale die elektriciteit aan het net leverde werd op 27 juni 1954 in dienst genomen in Obninsk in de toenmalige RSFSR van de Sovjet-Unie: hij produceerde 5 MW. Maar de eerste commerciële reactor ter wereld was die van Calder Hall in Sellafield, Engeland met een vermogen van 50 MW bij de opening in 1956.

Radioactieve risico's

Het grootste risico van een kerncentrale is het vrijkomen van radioactief materiaal uit een kernreactor, waarbij de gezondheid van grote aantallen mensen en dieren in een aanzienlijk gebied rond de kerncentrale in gevaar komt. De straling kan vrijkomen als gevolg van een oververhitting in de vitale delen van een reactor of bij beschadiging van de reactor. De uitstoot tijdens de normale werking van de centrale, via de ventilatieschacht van het reactorgebouw en het koelwater, zijn beperkt.[3]

Nadat een lading kernbrandstof "op" is gebrand, is ze hoog radioactief en produceert ze nog langere tijd warmte. De brandstof wordt daarom eerst een periode - meestal een aantal jaar - in een grote waterbak opgeslagen. Daar wordt de straling geabsorbeerd en de warmte die door het radioactieve verval wordt geproduceerd, afgevoerd. Na verloop van tijd neemt de activiteit van de oude brandstofelementen af, zodat ze droog kunnen worden opgeslagen. Deze brandstofelementen zijn dan echter nog steeds hoog radioactief, en moeten dan ook voor vele duizenden jaren uit het milieu gehouden worden. In verschillende landen worden dergelijke gebruikte splijtstofelementen opgewerkt: de bruikbare isotopen worden eruit gehaald om nieuwe splijtstofelementen te fabriceren. Wat overblijft, zijn verschillende soorten radioactief afval. In veel landen is er nog geen definitieve opslagplaats voor dit radioactieve afval. Sommige radio-isotopen die als hoogradioactief afval worden betiteld, kunnen in zogenaamde 'snelle reactoren' worden gebruikt als "brandstof", wat hun statuut als afval in vraag stelt.

Ongevallen

De belangrijkste ongelukken met kerncentrales zijn:

Uitbaters van kerncentrales zijn verplicht zich te verzekeren tegen kernongevallen. Hun aansprakelijkheid is strikt en absoluut, maar beperkt door verschillende verdragen en protocollen. Eventuele hogere schade wordt in de praktijk dus door de gemeenschap gedragen.

Onderdelen van een kerncentrale

Een kerncentralepark bevat alle faciliteiten nodig voor de productie van elektriciteit. De meeste centrales bestaan uit meerdere units, die al dan niet identiek zijn. Zo bestaat de Kerncentrale van Doel uit twee (tweeling)units van 433 MW elk, en twee units van ca. 1000 MW elk. Elke unit is dan weer opgebouwd uit 3 à 4 verschillende treinen die onafhankelijk van elkaar kunnen werken.

De kerncentrales in België omvatten de volgende faciliteiten:

  • het reactorgebouw: dubbelwandig gebouw dat de kernreactor bevat en daarnaast het drukregelvat die de druk in het primaire circuit controleert, het primaire circuit, de stoomgenerator die de overgang vormt tussen het primaire en secundaire circuit, de primaire pomp die het koelmiddel doet circuleren, en een deel van het secundaire circuit.
  • het splijtstoffengebouw voor de opslag van splijtstofelementen kern tijdens de revisies (elke 12 tot 18 maanden wordt 1/3 van de splijtstof vervangen) en voor het afkoelen van gebruikte kernbrandstof. De brandstof wordt onder water opgeslagen .
  • de machinezaal met stoomturbines, alternatoren en condensatoren;
  • exploitatiegebouwen (controlezaal, bedrijfskamer, magazijnen, werkplaats);
  • gebouwen voor gas-, water- en afvalbehandeling;
  • onderstations die de aansluiting verzekeren op het elektrisch net (150 kV en 380 kV);
  • waterinlaat en koeltorens voor de koeling;
  • gebouwen voor de hulpdiensten zoals brandweer, elektrische, mechanische en nucleaire hulpdiensten;
  • gebouwen met installaties voor noodsituaties, zoals het gebouw waterstofrecombinatie, noodkoelvijvers, dieselgroepen en nooddieselgroepen, noodcontrolezaal, noodbedrijfskamer en noodplankamer;
  • algemene gebouwen zoals het ontvangstgebouw, administratief gebouw, toegangsgebouw, guesthouse.

Nucleaire installaties

Het begrip "nucleaire installatie" omvat meer dan enkel kerncentrales of kernreactoren. Alle instituten waaraan op grond van de Kernenergiewet een vergunning is verleend, vallen onder het begrip "nucleaire installatie". Dat kunnen bijvoorbeeld onderzoekslaboratoria, opwerkingsfabrieken of verrijkingsinstallaties zijn. Bij wet zijn de vergunningshouders verplicht ongelukken en incidenten met radioactief materiaal te melden bij de bevoegde overheid.

België

Koeltoren van de Kerncentrale van Doel

België is zeer actief op gebied van kernenergie mede vanwege zijn banden met de voormalige kolonie Belgisch-Kongo, dat uraniummijnen had. Ook het uranium voor de eerste Amerikaanse atoombom op Hiroshima, Little Boy, was afkomstig uit Belgisch Congo.[5]

Plannen om een achtste reactor te bouwen werden in de jaren tachtig afgeblazen. Electrabel en SPE namen samen een belang van 25% in kerncentrale Chooz, de centrale van Chooz, gelegen net over de Franse grens.

Nederland

Luchtfoto van de centrale van Dodewaard tijdens hoogwater (bron:)

In Nederland stonden in 2003 zes nucleaire installaties waarvan er één buiten gebruik gesteld is.

Nieuwe centrales

In 1985 waren er vergevorderde plannen voor de bouw van nog drie nieuwe kerncentrales. Deze zouden worden gebouwd op de Maasvlakte, de Eemshaven en nog een tweede centrale in Borssele. Na de kernramp van Tsjernobyl zijn deze plannen bevroren.

In 2006 waren het CDA en de VVD van mening dat er binnen 10 jaar een tweede kerncentrale bij moest komen voor nog eens 4% van de stroombehoefte.[9] De PvdA, SP en GroenLinks waren tegen. De bouw zou enkele jaren uitgesteld kunnen worden volgens staatssecretaris Pieter van Geel.[10]

In 2009 presenteerde het energieconcern DELTA het voornemen om een nieuwe kerncentrale te bouwen te Borssele, Borssele 2. Naast DELTA waren ook RWE en Energy Resources Holding in de race om de centrale te bouwen.

Op 22 september 2010 publiceerde het ministerie van VROM de kennisgeving energiewet met daarin een startnotitie met betrekking het voornemen van EHR om een centrale te bouwen. In 2012 werden de plannen weer voorlopig opgeschort in verband met overcapaciteit en economische onzekerheden.

In de wereld

Kerncentrales naar leeftijd

Eind 2017 hadden de 448 bestaande kerncentrales samen 17.457 jaar gefunctioneerd, of 39 jaar gemiddeld per centrale.[11][12]

Jaar van ingebruikname Aantal reactoren Capaciteit (MW)
Voor 1980 103 75734
1980-1989 210 197034
1990-1999 55 52492
2000-2009 33 25665
2010-2019 47 40819
Totaal (eind 2017) 448 391744

Kerncentrales naar werelddeel

De overgrote meerderheid van de kerncentrales is terug te vinden in Noord-Amerika, West-Europa en Azië.[13]

Werelddeel Aantal reactoren Capaciteit (MW)
Afrika 2 1860
Latijns-Amerika 7 5068
Noord-Amerika 118 113423
Azië & Verre Oosten 110 100689
Azië Midden-Oosten en Zuid 28 8475
Europa, Centraal en Oost 70 51140
Europa, West 113 111089
Totaal (eind 2017) 448 391744

Rusland bouwde tussen 2010 en 2019 een drijvende kerncentrale, de Akademik Lomonosov. De kerncentrale die gebouwd is in Sint-Petersburg moet stroom en warmte leveren in de buurt van Pevek en vervangt de centrales van Kerncentrale Bilibino die tussen maart 2019 en december 2025 definitief worden stilgelegd. Milieuorganisaties zijn bezorgd om een natuurramp van grote omvang mocht het een keer mis gaan met de centrale.[14]

Ontmanteling

Bij het einde van de levensduur van een kerncentrale moeten een aantal maatregelen genomen worden voor het afsluiten van de centrale, en het terugkeren naar de groene wei-situatie. Hiervoor zijn verschillende strategieën mogelijk. Het proces verloopt in fases, en duurt meerdere jaren, soms tientallen jaren. Voor de kosten wordt tijdens de gebruiksperiode jaarlijks een fonds aangevuld, dat na het verstrijken van de levensduur voldoende middelen moet bieden voor de ontmanteling.

Zie ook

Zie de categorie Nuclear power plants van Wikimedia Commons voor mediabestanden over dit onderwerp.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.