Wide Angle Search for Planets

SuperWASP
SuperWASP-South cameras on Optical Mechanics, Inc. equatorial mount
Location(s) Spain, South Africa Edit this at Wikidata
Coordinates 28°45′37″N 17°52′45″W / 28.7602°N 17.8793°W / 28.7602; -17.8793Coordinates: 28°45′37″N 17°52′45″W / 28.7602°N 17.8793°W / 28.7602; -17.8793 Edit this at Wikidata
Telescope style Astronomical survey
Optical telescope Edit this on Wikidata
Mounting Equatorial mount Edit this on Wikidata Edit this at Wikidata
Website wasp-planets.net Edit this at Wikidata

WASP or Wide Angle Search for Planets is an international consortium of several academic organisations performing an ultra-wide angle search for exoplanets using transit photometry. The array of robotic telescopes aims to survey the entire sky, simultaneously monitoring many thousands of stars at an apparent visual magnitude from about 7 to 13.[1]

WASP is the detection program composed of the Isaac Newton Group, IAC and six universities from the United Kingdom. The two continuously operating, robotic observatories cover the Northern and Southern Hemisphere, respectively. SuperWASP-North is at Roque de los Muchachos Observatory on the mountain of that name which dominates La Palma in the Canary Islands. WASP-South is at the South African Astronomical Observatory, Sutherland in the arid Roggeveld Mountains of South Africa. These use eight wide-angle cameras that simultaneously monitor the sky for planetary transit events and allow the monitoring of millions of stars simultaneously, enabling the detection of rare transit events.[2]

Instruments used for follow-up characterization employing doppler spectroscopy to determine the exoplanet's mass include the HARPS spectrograph of ESO's 3.6-metre telescope as well as the Swiss Euler Telescope, both located at La Silla Observatory, Chile.[3] WASP's design has also been adopted by the Next-Generation Transit Survey.[4] As of 2016, the Extrasolar Planets Encyclopaedia data base contains a total of 2,107 extrasolar planets of which 118 were discoveries by WASP.[5]

Equipment

WASP consists of two robotic observatories; SuperWASP-North at Roque de los Muchachos Observatory on the island of La Palma in the Canaries and WASP-South at the South African Astronomical Observatory, South Africa. Each observatory consists of an array of eight Canon 200 mm f1.8 lenses backed by high quality 2048 x 2048 science grade CCDs, the model used is the iKon-L[6] manufactured by Andor Technology.[7] The telescopes are mounted on an equatorial telescope mount built by Optical Mechanics, Inc.[8] The large field of view of the Canon lenses gives each observatory a massive sky coverage of 490 square degrees per pointing.[9]

Function

The observatories continuously monitor the sky, taking a set of images approximately once per minute, gathering up to 100 gigabytes of data per night. By using the transit method, data collected from WASP can be used to measure the brightness of each star in each image, and small dips in brightness caused by large planets passing in front of their parent stars can be searched for.

One of the main purpose of WASP was to revolutionize the understanding of planet formation, paving the way for future space missions searching for 'Earth'-like worlds.

Structure

WASP is operated by a consortium of academic institutions which include:

WASP-39b and its parent star (artist’s impression).[10]

On 26 September 2006, the team reported the discovery of two extrasolar planets: WASP-1b (orbiting at 0.038 AU (6 million km) from star once every 2.5 days) and WASP-2b (orbiting three quarters that radius once every 2 days).[11]

On 31 October 2007, the team reported the discovery of three extrasolar planets: WASP-3b, WASP-4b and WASP-5b. All three planets are similar to Jovian mass and are so close to their respective stars that their orbital periods are all less than two days. These are among the shortest orbital periods discovered. The surface temperatures of the planets should be more than 2000 degrees Celsius, owing to their short distances from their respective stars. The WASP-4b and WASP-5b are the first planets discovered by the cameras and researchers in South Africa. WASP-3b is the third planet discovered by the equivalent in La Palma.

In August 2009, the discovery of WASP-17b was announced, believed to be the first planet ever discovered to orbit in the opposite direction to the spin of its star, WASP-17.

Discoveries and follow-up observations

Star Constellation Right
ascension
Declination App.
mag.
Distance (ly) Spectral
type
Planet Mass
(MJ)
Radius
(RJ)
Orbital
period

(d)
Semimajor
axis

(AU)
Orbital
eccentricity
Inclination
(°)
Discovery
year
WASP-1Andromeda00h 20m 40s+31° 59 2411.791031F7V b0.861.4842.51994640.0382088.652006
WASP-2Delphinus20h 30m 54s+06° 25 4611.98493K1V b0.8471.0792.152221440.03138084.732006
WASP-3Lyra18h 33m 32s+35° 39 4210.64727F7V b2.061.4541.84683720.0313085.062007
WASP-4Phoenix23h 34m 15s−42° 03 4112.6851G7V b1.12151.3631.338231870.02312088.82007
WASP-5Phoenix23h 57m 24s−41° 16 3812.26967G4V b1.581.091.62842960.02683085.82007
WASP-6Aquarius23h 12m 37s−22° 40 0612.41001G8V b0.51.33.360.02690.05488.472008
WASP-7Microscopium20h 44m 10s−39° 13 319.51460F5V b0.960.9154.9546580.0618089.62008
WASP-8Sculptor23h 59m 36.07s−35° 01 52.99.9160G6 b2.231.178.160.07930.308288.522008
WASP-8Sculptor23h 59m 36.07s−35° 01 52.99.9160G6 c9.4543235.282014
WASP-10Pegasus23h 15m 58s+31° 27 4612.7290K5 b3.061.083.09276160.03710.05786.82008
WASP-11/HAT-P-10Perseus03h 09m 29s+30° 40 2511.89408K3V b0.4601.0453.72246900.0439088.52008
WASP-12Auriga06h 30m 32.794s+29° 40 20.2911.7871G0V b1.4041.7361.09142220.022930862008
WASP-13Lynx09h 20m 24.71s+33° 52 57.010.7509G1V b0.4851.3654.3530110.05379085.642008
WASP-14Boötes14h 33m 06s+21° 53 419.75520F5V b7.7251.2592.24377040.0370.090384.792008
WASP-15Hydra13h 55m 42.71s−32° 09 34.610.91005F5 b0.541.163.750.0472085.52008
WASP-16Virgo14h 18m 43.92s−20° 16 31.811.3520G3V b0.8551.0083.120.0421085.222009
WASP-17Scorpius15h 59m 51s−28° 03 4211.61000F6 b0.4861.9913.7354380.05150.02886.832009
WASP-18Phoenix01h 37m 24.95s−45° 40 40.89.29330F9 b10.31.1060.941452990.020260.0092862009
WASP-19Vela09h 43m 40.077s−45° 39 33.0612.3815G8V b1.1681.3860.788840.016550.004679.42009
WASP-2000h 20m 38.53s−23° 56 08.610.7685F9 b0.311.4594.90.0600385.572011
WASP-21Pegasus23h 09m 58.23s+18° 23 46.011.6750G3V b0.31.214.3225060.052087.292010
WASP-22Orion03h 31m 16.32s−23° 49 11.012.0980G1 b0.5881.1583.53273130.04698088.262010
WASP-23Puppis06h 44m 31s−42° 45 4312.7K1V b0.8840.9622.94442560.0376< 0.06288.392010
WASP-24Virgo15h 08m 51.72s+02° 20 36.111.31080F8-9 b1.031.102.3410.0359085.712010
WASP-25Hydra13h 01m 26.36s−27° 31 20.011.9550G4 b0.581.263.7650.0487087.72010
WASP-26Cetus00h 18m 24.70s−15° 16 02.311.3815G0 b1.0281.2812.75660040.03985082.912010
WASP-28Pisces23h 34m 27.87s−01° 34 48.1121090F8 b1.120.913.4090.04550.04688.612010
WASP-29Phoenix23h 51m 31.08s−39° 54 24.211.3260K4V b0.250.743.9230.0456087.962010
WASP-31Crater11h 17m 45s−19° 03 1711.71305F b0.4781.5373.4059090.04657084.542010
WASP-32Pisces00h 15m 51s+01° 12 0211.3G b3.61.182.718650.03940.01885.32010
WASP-33Andromeda02h 26m 51.05s+37° 33 01.78.3378A5 b< 4.591.4381.219869670.02558087.672010
WASP-34Crater11h 01m 36s−23° 51 3810.4391G5 b0.591.224.31767820.05240.03885.22010
WASP-35G0 b0.721.323.1615750.0431787.962011
WASP-36Hydra08h 45m 19.0s−08° 01 3712.71468G2 b2.2791.2691.537370.0262483.652010
WASP-37Virgo14h 47m 46.62s+01° 03 53.412.71102G2 b1.6961.1363.5774710.04339088.782010
WASP-38Hercules16h 15m 50s+10° 01 579.42359F8 b2.7121.0796.8718150.075510.032188.692010
WASP-39Virgo14h 29m 18s−03° 26 4012.11750G8 b0.281.274.0552590.0486087.832011
WASP-40/HAT-P-27Virgo14h 51m 04.25s+05° 56 50.412.21665G8 b0.661.0553.03957210.04030.07884.982011
WASP-41Centaurus12h 42m 28.51s−30° 38 23.511.6587G8V b0.921.213.0523940.04087.32010
WASP-4212h 51m 55.62s−42° 04 25.212.57K1 b0.51.084.981690.04580.0688.252011
WASP-43Sextans10h 19m 38s−09° 48 2312.4K7V b1.780.930.8134750.0142082.62011
WASP-44Cetus00h 15m 37s−11° 56 1712.9G8V b0.8891.142.42380390.03473086.022011
WASP-45Sculptor00h 20m 57s−35° 59 5412K2V b1.0071.163.12608760.04054084.472011
WASP-46Indus21h 14m 57s−55° 52 1812.9G6V b2.1011.311.430370.02448082.632011
WASP-47Aquarius20h 40m 09.16s−00° 52 15.011.9652G9Vb1.141.154.1591489.22011
WASP-48Cygnus19h 24m 39s+55° 28 2311.06F/Gb0.981.672.1436340.03444080.092011
WASP-4906h 04m 21.47s−16° 57 55.111.36G6b0.3781.1152.7817484.892011
WASP-50Eridanus02h 54m 45s−10° 53 5311.6750G9b1.4681.1531.95509590.029450.00984.742011
WASP-51/HAT-P-30Draco08h 15m 48s+05° 50 1210.36629F9b0.7111.342.8105950.04190.03583.62011
WASP-52Pegasus23h 13m 59.0s+08° 45 4112457K2Vb0.461.271.7497885.352011
WASP-53b2.51.23.32011
WASP-5403h 41m 49.02 s−00° 07 4110.42F9V/IVb0.61.43.72011
WASP-55Virgo08h 15m 48s+05° 50 1211.81076b0.571.34.465630.053389.22011
WASP-5602h 13m 27.90s+23° 30 20.211.48G6b0.61.24.62011
WASP-5714h 55m 16.84s−02° 03 27.513.34G6b0.81.12.82011
WASP-58Lyra18h 18m 48.0s+45° 10 1911.66978G2Vb0.891.375.017180.056187.42011
WASP-59Pegasus23h 18m 30.0s+24° 53 2113408K5Vb0.70.97.92011
WASP-60Pegasus23h 15m 58s+31° 27 4612.181305G1Vb0.50.864.3050.0531087.92011
WASP-61Lepus05h 01m 12.0s−26° 03 1512.51566F7b2.061.243.85590.051489.352011
WASP-62Dorado05h 48m 34.0s−63° 59 1810.31566F7b0.571.394.411950.056788.32011
WASP-63Columba06h 17m 21.0s−38° 19 2411.21076G8b0.381.434.378090.57487.82011
WASP-64b1.20.71.62011
WASP-65Cancer08h 53m 18s+08° 31 2311.91010G6b1.61.32.32011
WASP-66Antlia10h 32m 54.0s−34° 59 2311.61239F4b2.321.394.086050.054685.92011
WASP-67Sagittarius19h 42m 59.0s−19° 56 5812.5734K0Vb0.421.44.614420.051785.82011
WASP-6820h 20m 22.98s−19° 18 52.910.7G0b0.951.245.082011
WASP-69Kb0.313.92011
WASP-70AG4b0.60.83.72011
WASP-71Cetus01h 57m 03.0s00° 45 3210.57652F8b2.2581.52.9036784.22012
WASP-72Fornax00h 10m 56.6s−30° 10 099.6F7b1.54611.272.216740.037082013
WASP-73Indus21h 19m 47.91s−58° 08 5610.5F9b1.881.164.0870.055142013
WASP-75Cetus01h 31m 18.2s−10:40:32°11.45848F9b1.071.272.484190.0375822013
WASP-76Pisces01h 46m 32.0s02° 42 029.5390F7b0.921.831.809890.033882013
WASP-77ACetus02h 28m 37.0s−07° 03 3811.29G8Vb1.761.211.3600389.42012
WASP-78Eridanus04h 15m 02.0s−22° 06 5912.01794F8b1.161.752.175180.0415892012
WASP-79Eridanus04h 25m 29.0s−30° 36 0210.1783F3b0.891.72.175180.036283.22012
WASP-80Aquila20h 12m 40.0s−02° 08 4411.88196K7Vb0.5540.9523.067850.03460.0789.922013
WASP-82Orion04h 50m 39s+01° 53 3810.1650F5b1.241.672.705780.044787.92013
WASP-84Hydra08h 44m 26s+01° 50 36390K0b0.6940.9428.523490.077188.3682013
WASP-85A11h 43m 38.1s+06° 33 49.411.2407±260G5b1.091.442.660.1138~089.722014
WASP-87 ACentaurus12h 21m 17.92s−52° 50 27610.7780F5b2.181.3851.68279500.0294681.072014
WASP-88Indus20h 38m 02.7s−48° 27 43.211.4F6b0.561.74.9540.064322013
WASP-90Equuleus21h 02m 08s+07° 03 2411.71100F6b0.631.633.916240.056282.12013
WASP-94A20h 55m 07.94s−34° 08 07.910.1587F8b0.4451.723.950.055<0.1388.72014
WASP-94B20h 55m 09.16s−34° 08 07.910.5587F9b≥0.6172.0080.03352014
WASP-95Grus21h 02m 08s−48° 00 1110.1G2b1.131.212.184670.0341688.42013
WASP-96Phoenix00h 04m 11s−47° 21 3812.2G8b0.481.23.425260.045385.62013
WASP-97Eridanus01h 38m 25s−55° 46 1910.6G5b1.321.132.072760.03303882013
WASP-98Eridanus03h 53m 42s−34° 19 4213.0G7b0.831.12.962640.03686.32013
WASP-99Eridanus02h 39m 35s−50° 00 299.5F8b2.781.15.752510.071788.82013
WASP-100Reticulum04h 35m 50s−64° 01 3710.8F2b2.031.692.849380.045782.62013
WASP-101Canis Major06h 33m 24s−23° 29 1010.3F6b0.51.413.585720.0506852013
WASP-103Hercules16h 37m 15.5s+07° 11 00.0712.1F8b1.491.530.9250.0198586.32014
WASP-10410h 42m 24.61s+07° 26 6.311.12466G8b1.2721.1371.75541370.0291883.632014
WASP-10611h 05m 43.13s−05° 04 45.911.21923F9b1.9251.0859.2897150.091789.492014
WASP-10813h 03m 19s−49° 38 2311.2717F9b1.1671.2152.67554630.039788.492014
WASP-10915h 28m 13.0s−16° 24 3911.41076F4b0.911.4433.31902330.046384.282014
WASP-11020h 23m 30s−44° 03 3012.31043G9b0.5151.2383.77839770.045788.062014
WASP-11121h 55m 04s−22° 36 4510.3684F5b1.831.4422.3109650.0391481.612014
WASP-11222h 37m 57s−35° 09 1413.31337G6b0.881.1913.03539920.038288.682014
WASP-11702h 27m 06.09s−50° 17 04.310.15F9Vb0.27551.02110.021650.094590.30289.142014 [12]
WASP-118b
WASP-119b
WASP-120b
WASP-121b
WASP-122b
WASP-123b
WASP-124b
WASP-126b
WASP-127b
WASP-129b
WASP-131b
WASP-132b
WASP-133b
WASP-135b
WASP-136b
WASP-138b2016 [13]
WASP-139b
WASP-140b
WASP-141b
WASP-142b
WASP-152b
WASP-157b

1SWASP J140747.93-394542.6 b

The discovery of the J1407 system and its unusual eclipses were first reported by a team led by University of Rochester astronomer Eric Mamajek in 2012.[14] The existence and parameters of the ring system around the substellar companion J1407b were deduced from the observation of a very long and complex eclipse of the previously anonymous star J1407 during a 56-day period during April and May 2007.[14][15] The low-mass companion J1407b has been referred to as a "Saturn on steroids"[16][17] or “Super Saturn[18] due to its massive system of circumplanetary rings with a radius of approximately 90 million km (0.6 AU).[19] The orbital period of the ringed companion J1407b is estimated to be around a decade (constrained to 3.5 to 13.8 years), and its most probable mass is approximately 13 to 26 Jupiter masses, but with considerable uncertainty.[19] The ringed body can be ruled out as being a star with mass of over 80 Jupiter masses at greater than 99% confidence.[19] The ring system has an estimated mass similar to that of the Earth.[20] A gap in the ring system at about 61 million km (0.4 AU) from its centre is considered to be indirect evidence of the existence of an exomoon with mass up to 0.8 Earth masses.[19]

Notes

  • Note a: WASP-9b was determined to be a false positive after its initial public announcement as a planet, and the identifier has not been subsequently reassigned to a real planetary system.[21]

See also

Other extrasolar planet search projects

Extrasolar planet searching spacecraft

References

  1. R. A. Street, D. L. Pollacco, A. Fitzsimmons, F. P. Keenan, Keith Horne, S. Kane, A. Collier Cameron, T. A. Lister, C. Haswell, A. J. Norton, B. W. Jones, I. Skillen, S. Hodgkin, P. Wheatley, R. West, D. Brett (2002). "SuperWASP: Wide Angle Search for Planets" (PDF).
  2. "SuperWASP Survey Information". NASA Exoplanet Science Institute. 5 February 2015.
  3. Queloz, D.; Anderson, D. R.; Collier Cameron, A.; Gillon, M.; Hebb, L.; Hellier, C.; Maxted, P.; Pepe, F.; Pollacco, D.; Ségransan, D.; Smalley, B.; Triaud, A. H. M. J.; Udry, S.; West, R. (2010). "WASP-8b: a retrograde transiting planet in a multiple system". Astronomy and Astrophysics. 517: L1. arXiv:1006.5089. Bibcode:2010A&A...517L...1Q. doi:10.1051/0004-6361/201014768.
  4. "Searching for Super-Earths" (PDF). Queen's University. 2014. Retrieved 1 September 2015.
  5. "Catalog". Extrasolar Planets Encyclopaedia. Retrieved 1 April 2016.
  6. http://wasp-planets.net/technical/
  7. http://www.andor.com
  8. "Archived copy". Archived from the original on 28 December 2007. Retrieved 14 February 2009.
  9. Current status of the SuperWASP project, D. J. Christian et al.
  10. "Hubble observes exoplanet atmosphere in more detail than ever before". www.spacetelescope.org. Retrieved 1 March 2018.
  11. Collier Cameron, A; Bouchy, F; Hébrard, G; Maxted, P; Pollacco, D; Pont, F; Skillen, I; Smalley, B; Street, R. A; West, R. G; Wilson, D. M; Aigrain, S; Christian, D. J; Clarkson, W. I; Enoch, B; Evans, A; Fitzsimmons, A; Fleenor, M; Gillon, M; Haswell, C. A; Hebb, L; Hellier, C; Hodgkin, S. T; Horne, K; Irwin, J; Kane, S. R; Keenan, F. P; Loeillet, B; Lister, T. A; et al. (2007). "WASP-1b and WASP-2b: Two new transiting exoplanets detected with SuperWASP and SOPHIE". Monthly Notices of the Royal Astronomical Society. 375 (3): 951–957. arXiv:astro-ph/0609688. Bibcode:2007MNRAS.375..951C. doi:10.1111/j.1365-2966.2006.11350.x.
  12. Lendl, M; Triaud, A. H. M. J; Anderson, D. R; Collier Cameron, A; Delrez, L; Doyle, A. P; Gillon, M; Hellier, C; Jehin, E; Maxted, P. F. L; Neveu-Vanmalle, M; Pepe, F; Pollacco, D; Queloz, D; Ségransan, D; Smalley, B; Smith, A. M. S; Udry, S; Van Grootel, V; West, R. G (2014). "WASP-117b: A 10-day-period Saturn in an eccentric and misaligned orbit". Astronomy and Astrophysics. 568: A81. arXiv:1406.6942. Bibcode:2014A&A...568A..81L. doi:10.1051/0004-6361/201424481.
  13. Lam, K. W. F; Faedi, F; Brown, D. J. A; Anderson, D. R; Delrez, L; Gillon, M; Hébrard, G; Lendl, M; Mancini, L; Southworth, J; Smalley, B; Triaud, A. H. M; Turner, O. D; Hay, K. L; Armstrong, D. J; Barros, S. C. C; Bonomo, A. S; Bouchy, F; Boumis, P; Collier Cameron, A; Doyle, A. P; Hellier, C; Henning, T; Jehin, E; King, G; Kirk, J; Louden, T; Maxted, P. F. L; McCormac, J. J; et al. (2017). "From dense hot Jupiter to low-density Neptune: The discovery of WASP-127b, WASP-136b, and WASP-138b". Astronomy and Astrophysics. 599 (3): A3. arXiv:1607.07859. Bibcode:2017A&A...599A...3L. doi:10.1051/0004-6361/201629403.
  14. 1 2 Mamajek, Eric E.; Quillen, Alice C.; Pecaut, Mark J.; Moolekamp, Fred; Scott, Erin L.; Kenworthy, Matthew A.; Collier Cameron, Andrew; Parley, Neil R. (March 2012). "Planetary Construction Zones in Occultation: Discovery of an Extrasolar Ring System Transiting a Young Sun-like Star and Future Prospects for Detecting Eclipses by Circumsecondary and Circumplanetary Disks". The Astronomical Journal. 143 (3): 72. arXiv:1108.4070. Bibcode:2012AJ....143...72M. doi:10.1088/0004-6256/143/3/72.
  15. "Eclipsing Ring System J1407". Cerro Tololo Inter-American Observatory. June 22, 2012. Retrieved January 27, 2015.
  16. St. Fleur, Nicholas (October 13, 2016). "Distant Ringed Object Could Be 'Saturn on Steroids'". New York Times. Retrieved October 14, 2016.
  17. O'Neill, Ian (January 12, 2012). "'Saturn on Steroids' Exoplanet Discovered?". Discovery News. Retrieved January 27, 2014.
  18. Gigantic ring system around J1407b much larger, heavier than Saturn’s, on University of Rochester website.
  19. 1 2 3 4 Kenworthy, Matthew A.; Mamajek, Eric E. (January 22, 2015). "Modeling giant extrasolar ring systems in eclipse and the case of J1407b: sculpting by exomoons?". The Astrophysical Journal. 800 (2): 126. arXiv:1501.05652. Bibcode:2015ApJ...800..126K. doi:10.1088/0004-637X/800/2/126.
  20. "Gigantic ring system around J1407b much larger, heavier than Saturn's". University of Rochester. January 26, 2015. Retrieved January 27, 2015.
  21. Cunha, D.; Figuera, P.; Santos, N. C.; Lovis, C.; Boue, G. (2013). "Impact of stellar companions on precise radial velocities". Astronomy and Astrophysics. 550: A75. arXiv:1212.2848. Bibcode:2013A&A...550A..75C. doi:10.1051/0004-6361/201220083.

News items

Video clips

  • Keele University
  • McCormac, James. "Planet Hunting". Deep Space Videos. Brady Haran.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.