GDF6

GDF6
Identifiers
AliasesGDF6, BMP-13, BMP13, CDMP2, KFM, KFS, KFS1, KFSL, LCA17, MCOP4, MCOPCB6, SCDO4, SGM1, growth differentiation factor 6, SYNS4
External IDsOMIM: 601147 MGI: 95689 HomoloGene: 40883 GeneCards: GDF6
Gene location (Human)
Chr.Chromosome 8 (human)[1]
Band8q22.1Start96,142,330 bp[1]
End96,160,792 bp[1]
Orthologs
SpeciesHumanMouse
Entrez

392255

242316

Ensembl

ENSG00000156466

ENSMUSG00000051279

UniProt

Q6KF10

P43028

RefSeq (mRNA)

NM_001001557

NM_013526

RefSeq (protein)

NP_001001557

NP_038554

Location (UCSC)Chr 8: 96.14 – 96.16 MbChr 4: 9.84 – 9.86 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Growth differentiation factor 6 (GDF6) is a protein that in humans is encoded by the GDF6 gene.[5]

Function

GDF6 belongs to the transforming growth factor beta superfamily and may regulate patterning of the ectoderm by interacting with bone morphogenetic proteins,[6] and control eye development.[7][8]

Growth differentiation factor 6 (GDF6) is a regulatory protein associated with growth and differentiation of developing embryos. GDF6 is encoded by the GDF6 gene. It is a member the transforming growth factor beta superfamily which is a group of proteins involved in early regulation of cell growth and development. GDF6 has been shown to play an important role in the patterning of the epidermis[9] and bone and joint formation.[10] GDF6 induces genes related to the development of the epidermis and can bind directly to noggin, a gene that controls neural development, to block its effect.[9] GDF6 interacts with bone morphogenetic proteins (BMPs) to form heterodimers that may work to regulate neural induction and patterning in developing embryos.[9] By developing a GDF6 “knockout” model, scientists repressed expression of GDF6 in developing mice embryos. Through this experiment, the scientists were able to directly link GDF6 with several skull and vertebral joint disorders, such as scoliosis and chondrodysplasia, Grebe type.[10]

Clinical significance

GDF6 is recurrently amplified and specifically expressed in 80% of the melanomas. Patients with less GDF6 had a lower risk of metastasis and a higher chance of survival. Since GDF6 expression is very low or undetectable in most healthy adult tissues its inhibition could be used to treat this lethal disease.[11]

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000156466 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000051279 - Ensembl, May 2017
  3. "Human PubMed Reference:".
  4. "Mouse PubMed Reference:".
  5. Davidson AJ, Postlethwait JH, Yan YL, Beier DR, van Doren C, Foernzler D, Celeste AJ, Crosier KE, Crosier PS (February 1999). "Isolation of zebrafish gdf7 and comparative genetic mapping of genes belonging to the growth/differentiation factor 5, 6, 7 subgroup of the TGF-beta superfamily". Genome Res. 9 (2): 121–9. doi:10.1101/gr.9.2.121. PMID 10022976.
  6. Chang C, Hemmati-Brivanlou A (1999). "Xenopus GDF6, a new antagonist of noggin and a partner of BMPs". Development. 126 (15): 3347–57. PMID 10393114.
  7. Asai-Coakwell M, French C, Berry K, Ye M, Koss R, Somerville M, Mueller R, van Heyningen V, Waskiewicz A, Lehmann O (2007). "GDF6, a Novel Locus for a Spectrum of Ocular Developmental Anomalies". Am J Hum Genet. 80 (2): 306–15. doi:10.1086/511280. PMC 1785352. PMID 17236135.
  8. Hanel M, Hensey C (2006). "Eye and neural defects associated with loss of GDF6". BMC Dev Biol. 6: 43. doi:10.1186/1471-213X-6-43. PMC 1609107. PMID 17010201.
  9. 1 2 3 Chang C, Hemmati-Brivanlou A (August 1999). "Xenopus GDF6, a new antagonist of noggin and a partner of BMPs". Development. 126 (15): 3347–57. PMID 10393114.
  10. 1 2 Settle SH, Rountree RB, Sinha A, Thacker A, Higgins K, Kingsley DM (February 2003). "Multiple joint and skeletal patterning defects caused by single and double mutations in the mouse Gdf6 and Gdf5 genes". Dev. Biol. 254 (1): 116–30. doi:10.1016/S0012-1606(02)00022-2. PMID 12606286.
  11. Venkatesan AM, Vyas R, Gramann AK, Dresser K, Gujja S, Bhatnagar S, Chhangawala S, Gomes CB, Xi HS, Lian CG, Houvras Y, Edwards YJ, Deng A, Green M, Ceol CJ (2017). "Ligand-activated BMP signaling inhibits cell differentiation and death to promote melanoma". The Journal of Clinical Investigation. doi:10.1172/JCI92513. PMID 29202482.

Further reading

  • Chiquet BT, Hashmi SS, Henry R, et al. (2009). "Genomic screening identifies novel linkages and provides further evidence for a role of MYH9 in nonsyndromic cleft lip and palate". Eur. J. Hum. Genet. 17 (2): 195–204. doi:10.1038/ejhg.2008.149. PMC 2874967. PMID 18716610.
  • Mazerbourg S, Sangkuhl K, Luo CW, et al. (2005). "Identification of receptors and signaling pathways for orphan bone morphogenetic protein/growth differentiation factor ligands based on genomic analyses". J. Biol. Chem. 280 (37): 32122–32. doi:10.1074/jbc.M504629200. PMID 16049014.
  • Storm EE, Huynh TV, Copeland NG, et al. (1994). "Limb alterations in brachypodism mice due to mutations in a new member of the TGF beta-superfamily". Nature. 368 (6472): 639–43. doi:10.1038/368639a0. PMID 8145850.
  • Zhang X, Li S, Xiao X, et al. (2009). "Mutational screening of 10 genes in Chinese patients with microphthalmia and/or coloboma". Mol. Vis. 15: 2911–8. PMC 2802294. PMID 20057906.
  • Erlacher L, McCartney J, Piek E, et al. (1998). "Cartilage-derived morphogenetic proteins and osteogenic protein-1 differentially regulate osteogenesis". J. Bone Miner. Res. 13 (3): 383–92. doi:10.1359/jbmr.1998.13.3.383. PMID 9525338.
  • Tassabehji M, Fang ZM, Hilton EN, et al. (2008). "Mutations in GDF6 are associated with vertebral segmentation defects in Klippel-Feil syndrome". Hum. Mutat. 29 (8): 1017–27. doi:10.1002/humu.20741. PMID 18425797.
  • Wolfman NM, Hattersley G, Cox K, et al. (1997). "Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-beta gene family". J. Clin. Invest. 100 (2): 321–30. doi:10.1172/JCI119537. PMC 508194. PMID 9218508.
  • Tomaski SM, Zalzal GH (1999). "In vitro regulation of expression of cartilage-derived morphogenetic proteins by growth hormone and insulinlike growth factor 1 in the bovine cricoid chondrocyte". Arch. Otolaryngol. Head Neck Surg. 125 (8): 901–6. doi:10.1001/archotol.125.8.901. PMID 10448738.
  • Asai-Coakwell M, French CR, Ye M, et al. (2009). "Incomplete penetrance and phenotypic variability characterize Gdf6-attributable oculo-skeletal phenotypes". Hum. Mol. Genet. 18 (6): 1110–21. doi:10.1093/hmg/ddp008. PMID 19129173.
  • Bobacz K, Gruber R, Soleiman A, et al. (2002). "Cartilage-derived morphogenetic protein-1 and -2 are endogenously expressed in healthy and osteoarthritic human articular chondrocytes and stimulate matrix synthesis". Osteoarthr. Cartil. 10 (5): 394–401. doi:10.1053/joca.2002.0522. PMID 12027540.
  • Gajavelli S, Wood PM, Pennica D, et al. (2004). "BMP signaling initiates a neural crest differentiation program in embryonic rat CNS stem cells". Exp. Neurol. 188 (2): 205–23. doi:10.1016/j.expneurol.2004.03.026. PMID 15246821.
  • Gerhard DS, Wagner L, Feingold EA, et al. (2004). "The Status, Quality, and Expansion of the NIH Full-Length cDNA Project: The Mammalian Gene Collection (MGC)". Genome Res. 14 (10B): 2121–7. doi:10.1101/gr.2596504. PMC 528928. PMID 15489334.
  • Chang SC, Hoang B, Thomas JT, et al. (1994). "Cartilage-derived morphogenetic proteins. New members of the transforming growth factor-beta superfamily predominantly expressed in long bones during human embryonic development". J. Biol. Chem. 269 (45): 28227–34. PMID 7961761.
  • Reddi AH (1995). "Cartilage morphogenesis: role of bone and cartilage morphogenetic proteins, homeobox genes and extracellular matrix". Matrix Biol. 14 (8): 599–606. doi:10.1016/S0945-053X(05)80024-1. PMID 9057810.
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2002). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
  • Shen B, Bhargav D, Wei A, et al. (2009). "BMP-13 Emerges as a Potential Inhibitor of Bone Formation". Int. J. Biol. Sci. 5 (2): 192–200. doi:10.7150/ijbs.5.192. PMC 2646266. PMID 19240811.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.