Solar eclipse of June 1, 2030

An annular solar eclipse will occur on Saturday, June 1, 2030. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

Solar eclipse of June 1, 2030
Map
Type of eclipse
NatureAnnular
Gamma0.5626
Magnitude0.9443
Maximum eclipse
Duration321 sec (5 m 21 s)
Coordinates56.5°N 80.1°E / 56.5; 80.1
Max. width of band250 km (160 mi)
Times (UTC)
Greatest eclipse6:29:13
References
Saros128 (59 of 73)
Catalog # (SE5000)9575

An annular eclipse will start on the north of Africa and will cross Eurasian continent, will cross Algeria, Tunisia, Libya, Malta, Greece, Bulgaria, Ukraine, Russia, Kazakhstan, China and Japan. An eclipse will pass through lot of large cities such as Tripoli, Athens, Istanbul, Krasnodar, Rostov-on-Don, Volgograd, Omsk, Krasnoyarsk and Sapporo.

Images


Animated path

Solar eclipses 2029–2032

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[1]

Note: Partial solar eclipses on January 14, 2029 and July 11, 2029 occur on the previous lunar year eclipse set.

Saros 128

This eclipse is a member of the Solar Saros cycle 128, which includes 73 eclipses occurring in intervals of 18 years and 11 days. The series started with partial solar eclipse on August 29, 984 AD. From May 16, 1417 through June 18, 1471 the series produced total solar eclipses, followed by hybrid solar eclipses from June 28, 1489 through July 31, 1543, and annular solar eclipses from August 11, 1561 through July 25, 2120. The series ends at member 73 as a partial eclipse on November 1, 2282. All eclipses in this series occurs at the Moon’s descending node.

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

References

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.