Caesium hydride

Caesium hydride or cesium hydride (CsH) is a compound of caesium and hydrogen. It is an alkali metal hydride. It was the first substance to be created by light-induced particle formation in metal vapor,[2] and showed promise in early studies of an ion propulsion system using caesium.[3] It is the most reactive stable alkaline metal hydride of all. It reacts with water extremely vigorously.

Caesium hydride
Names
IUPAC name
Caesium hydride
Other names
Cesium hydride
Identifiers
3D model (JSmol)
ChemSpider
Properties
CsH
Molar mass 133.91339 g/mol
Appearance White or colorless crystals or powder[1]
Density 3.42 g/cm3[1]
Melting point ~170 °C (decomposes)[1]
Structure
Face centered cubic
Octahedral
Related compounds
Other anions
CsF, CsCl, CsBr, CsI
Other cations
LiH, NaH, KH, RbH,
and all other hydrides
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

The caesium nuclei in CsH can be hyperpolarized through interactions with an optically pumped caesium vapor in a process known as spin-exchange optical pumping (SEOP). SEOP can increase the nuclear magnetic resonance (NMR) signal of caesium nuclei by an order of magnitude.[4]

It is very difficult to make caesium hydride in a pure form. Caesium hydride can be produced by heating caesium carbonate and metallic magnesium in hydrogen at 580 to 620 degrees Celsius.[5]

Crystal structure

At room temperature and atmospheric pressure, CsH has the same structure as NaCl.

References

  1. Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. p. 4.57. ISBN 0-8493-0486-5.
  2. Tam, A.; Moe, G.; Happer, W. (1975). "Particle Formation by Resonant Laser Light in Alkali-Metal Vapor". Phys. Rev. Lett. 35 (24): 1630–33. Bibcode:1975PhRvL..35.1630T. doi:10.1103/PhysRevLett.35.1630.
  3. Burkhart, J. A.; Smith, F. J. (November 1963). "Application of dynamic programming to optimizing the orbital control process of a 24-hour communications satellite". NASA Technical Report.
  4. Ishikawa, K.; Patton, B.; Jau, Y.-Y.; Happer, W. (2007). "Spin Transfer from an Optically Pumped Alkali Vapor to a Solid". Phys. Rev. Lett. 98 (18): 183004. Bibcode:2007PhRvL..98r3004I. doi:10.1103/PhysRevLett.98.183004. PMID 17501572.
  5. A. Jamieson Walker (1924). A Text Book Of Inorganic Chemistry Volume I The Alkali Metals And Their Congeners.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.