List of large volume volcanic eruptions in the Basin and Range Province

Large volume volcanic eruptions in the Basin and Range Province include Basin and Range eruptions in California, Idaho, Colorado, New Mexico, Texas, Arizona, Nevada, Wyoming and Oregon, as well as those of the Long Valley Caldera geological province and the Yellowstone hotspot.

Volcanic fields

Some of the volcanic fields of the Basin and Range Province are within: Northwestern Nevada, the Modoc Plateau, Central Nevada, the Great Basin, Southwestern Nevada, the Mojave Desert, and the Long Valley Caldera region. Named ones include: Coso Volcanic Field, Mono Lake Volcanic Field, Marysvale Volcanic Field, San Juan volcanic field, Indian Peak, Central Colorado volcanic field, Jemez volcanic lineament, Mogollon-Datil volcanic field, Santa Rosa-Calico, and Boot Heel volcanic field.

Geological features

Many geological features in Western United States have a Northeastern orientation, the North American craton motion has the same orientation as well.[1] For example: the Trans-Challis fault zone, Idaho; the Snake River in Oregon; the Garlock Fault, California; the Colorado River in Utah; the Colorado Mineral Belt; Crater Flat-Reveille Range-Lunar Crater lineament, the Northwestern Nevada volcanic field; the San Juan caldera cluster, Colorado; the Socorro-Magdalena caldera cluster, New Mexico; Jemez volcanic lineament (Raton hotspot trail); and the Yellowstone hotspot trail. But the Yellowstone hotspot trail was modified through faults and extension.

Geology

Prior to the Eocene Epoch (55.8 ±0.2 to 33.9 ±0.1 Ma) the convergence rate of the Farallon and North American Plates was fast and the angle of subduction was shallow. During the Eocene the Farallon Plate subduction-associated compressive forces of the Laramide orogeny ended, plate interactions changed from orthogonal compression to oblique strike-slip, and volcanism in the Basin and Range Province flared up. It is suggested that this plate continued to be underthrust until about 19 Ma, at which time it was completely consumed and volcanic activity ceased, in part. Olivine basalt from the oceanic ridge erupted around 17 Ma and extension began.[2][3][4][5][6] The extension resulted in roughly north-south-trending faults, the Great Basin, the Walker trough, the Owens graben, and the Rio Grande rift, for instance.

List of large volume eruptions in the Basin and Range Province

The large volume eruptions in the Basin and Range Province include:

  • Mono County, California, USA; Long Valley Caldera; 758.9 ka ±1.8; VEI 7; 600 cubic kilometers (144 cu mi) of Bishop Tuff.[7][8]
  • Valles Caldera, New Mexico, USA; around 1.15 Ma; VEI 7; around 600 cubic kilometers (144 cu mi) of the Tshirege formation, Upper Bandelier eruption.[8][9][10]
  • Valles Caldera, New Mexico, USA; around 1.47 Ma (Lower Bandelier eruption, the Otawi).[8][9][11][12]
  • Yellowstone hotspot (?), Lake Owyhee volcanic fields; 15.0 to 15.5 Ma.[13]
  • Yellowstone hotspot (?), Northwest Nevada volcanic field, Virgin Valley, High Rock, Hog Ranch, and unnamed calderas; West of the Pine Forest Range, Nevada; 15.5 to 16.5 Ma; Tuffs: Idaho Canyon, Ashdown, Summit Lake, and Soldier Meadow.[14][15][16][17][18]
  • Columbia River Basalt Province: Yellowstone hotspot sets off a huge pulse of volcanic activity, the first eruptions were near the Oregon-Idaho-Washington border. Columbia River and Steens flood basalts, Pueblo Mountains, Steens Mountain, Washington, Oregon, and Idaho; most vigorous eruptions were from 14 to 17 Ma.[8]
  • Mount Belknap Caldera (size: 17 x 13 km), Marysvale Volcanic Field, southwestern Utah; 19 Ma; 150 cubic kilometers (36 cu mi) of tephra (Joe Lott member).[8][24]
  • Big John Caldera (size: 10 x 6 km), Marysvale Volcanic Field, southwestern Utah; 22 Ma; 50 cubic kilometres (12 cu mi) of Delano Peak Tuff member.[8]
  • Monroe Peak Caldera (size: 20 x 16 km), Marysvale Volcanic Field, southwestern Utah; 23 Ma; 200 cubic kilometers (48 cu mi) of Osiris Tuff.[8][24]
  • Lake City calderas (size: 20 km wide), San Juan volcanic field, Colorado; 23.1 Ma; 300 cubic kilometers (72 cu mi) of Sunshine Peak Tuff.[8][25][26]
  • Turkey Creek Caldera (size: 21 km wide), Chiricahua National Monument, Arizona; 25 Ma; 500 cubic kilometers (120 cu mi) of Rhyolite Canyon Formation.[8][27]
  • Lake City calderas (size: 20 km wide), San Juan volcanic field, Colorado; 25.9 Ma; 200 to 500 cubic kilometers (48 to 120 cu mi) of tephra.[8][28]
  • Questa Caldera (size: 15 km wide), Questa-Latir volcanic locus, Questa, New Mexico; 26 Ma, 400 cubic kilometres (96 cu mi) of Amalia Tuff.[8][24]
  • Creede Caldera (size: 24 km wide), San Juan Mountains, Wheeler Geologic Area, San Juan volcanic field, Colorado; 26.7 Ma; less than 500 cubic kilometers (120 cu mi) of Snowshoe Mountain Tuff.[28][29]
  • San Luis caldera complex (size: 18 km wide), Wheeler Geologic Area, San Juan volcanic field, Colorado; 26.8 Ma, 562 cubic kilometres (135 cu mi) of Nelson Mountain Tuff.[8][28]
  • San Luis caldera complex (size: 18 km wide), Wheeler Geologic Area, San Juan volcanic field, Colorado; 26.9 Ma, 250 cubic kilometres (60 cu mi) of Cebola Creek Tuff.[28]
  • San Luis caldera complex (size: 18 km wide), Wheeler Geologic Area, San Juan volcanic field, Colorado; 27 Ma, 150 cubic kilometres (36 cu mi) of Rat Creek Tuff.[8][28]
  • Three Creeks Caldera (size: 8 km wide), Marysvale Volcanic Field, Cove Fort-Sulphurdale area, southwestern Utah; 27 Ma; 100 to 200 cubic kilometers (24 to 48 cu mi) of Three Creeks Tuff Member of the Bullion Canyon Volcanics.[8][24]
  • South River Caldera, Wheeler Geologic Area, San Juan volcanic field, Colorado; 27.1 Ma, more than 500 cubic kilometres (120 cu mi) of Wason Park Tuff.[8][28]
  • Central San Juan Caldera (concealed), San Juan volcanic field, Colorado; 27.2 Ma, 250 cubic kilometres (60 cu mi) of Blue Creek Tuff.[8][28]
  • Bachelor Caldera (size: 20 x 28 km), Wheeler Geologic Area, San Juan volcanic field, Colorado; 27.35 Ma; 1,200 cubic kilometers (288 cu mi) of Carpenter Ridge Tuff.[29]
  • Silverton Caldera (size: 20 km), San Juan volcanic field, Colorado; 27.6 Ma, 50 to 100 cubic kilometers (12 to 24 cu mi) of Crystal Lake Tuff.[8][28]
  • La Garita Caldera (size: 100 x 35 km), Wheeler Geologic Area, San Juan volcanic field, Colorado; VEI 8; more than 5,000 cubic kilometers (1,200 cu mi) of Fish Canyon Tuff was blasted out in a major single eruption about 27.8 Ma.[29][30][31]
  • San Juan Caldera (size: 22 x 24 km), San Juan volcanic field, Colorado; 28 Ma; more than 1,000 cubic kilometers (240 cu mi) of Sapinero Mesa Tuff.[8]
  • Uncompahgre Caldera (size: 23 x 20 km), Uncompahgre National Forest, San Juan volcanic field, Colorado; 28.1 Ma; more than 1,000 cubic kilometers (240 cu mi) of Dillon/Sapinero Mesa Tuffs.[8][32]
  • Lost Lake Caldera (size: 10 km wide), San Juan volcanic field, Colorado; 28.2 Ma, 100 to 500 cubic kilometers (24 to 120 cu mi) of Blue Mesa Tuff.[8]
  • Platoro calderas, San Juan volcanic field, Platoro, Conejos County, Colorado; 28.2 Ma; 1,000 cubic kilometers (240 cu mi) of Chiquito Peak Tuff.[8]
  • Central San Juan Caldera (concealed), San Juan volcanic field, Colorado; 28.3 Ma; 500 cubic kilometres (120 cu mi) of Masonic Park Tuff.[8][28]
  • Ute Creek Caldera, Central Colorado volcanic field, Colorado; 28.3 Ma; 500 cubic kilometres (120 cu mi) of Ute Ridge Tuff.[8][33]
Large volume eruptions of the Southwestern Nevada volcanic field (SWNVF)
Caldera name State (volcanic field) age size
Black Mountain Caldera (18 km wide)Nevada (SWNVF)7 Ma ±1300 km3 (72 cu mi) of Thirsty Canyon Tuff.[8][24]
Timber Mountain caldera complex (30 x 25 km)Nevada (SWNVF)11.45 Ma900 km3 (216 cu mi) of Timber Mountain Tuff – Ammonia Tanks member.[8][34]
Timber Mountain caldera complexNevada (SWNVF)11.6 Ma1,200 km3 (288 cu mi) of Timber Mountain Tuff – Rainer Mesa member.[8][34]
Paintbrush Caldera (20 km wide)Nevada (SWNVF)12.7 Ma1,000 km3 (240 cu mi) of Paintbrush Tuff – Topopah Spring member.[8][34]
Paintbrush CalderaNevada (SWNVF)12.8 Ma1,200 km3 (288 cu mi) of Paintbrush Tuff – Tiva Canyon member[8][34]
Silent Canyon Caldera (20 x 16 km)Nevada (SWNVF)13 Ma200 km3 (48 cu mi).[8][24]
Crater Flat GroupNevada (SWNVF)13.25 Ma650 km3 (156 cu mi) of Belted Range Tuff[8]

List of Rupelian calderas

The Rupelian age/stage (Paleogene period/system, Oligocene epoch/series) spans the time between 33.9 ±0.1 Ma and 28.4 ±0.1 Ma (million years ago).

  • Bursum Caldera (size: 40 x 30 km), Mogollon-Datil volcanic field, New Mexico; 28.5 Ma ±0.5; 1,050 cubic kilometres (250 cu mi) of Bloodgood Canyon Tuff.[8][35]
  • Bursum Caldera (size: 40 x 30 km), Mogollon-Datil volcanic field, New Mexico; 28.5 Ma ±0.5; 1,200 cubic kilometres (290 cu mi) of Apache Springs Tuff.[8][35]
  • San Juan Caldera (size: 24 x 22 km), San Juan volcanic field, Colorado; 28.5 Ma; 900 cubic kilometres (220 cu mi) of tephra.[8][32]
  • Summitville Caldera (size: 12 x 8 km), San Juan volcanic field, Colorado; 28.5 Ma; 100 to 500 cubic kilometers (24 to 120 cu mi) of Ojito Creek/ La Jadero Tuffs.[8][36][37]
  • Mount Hope (size: 15 km), San Juan volcanic field, Colorado; 29 Ma; 500 cubic kilometres (120 cu mi) of Masonic Park Tuff.[8][25]
  • Around White Rock caldera (size: 50 km North-South), White Rock Mountains, Great Basin, Nevada; 29.02 Ma ±0.04; 2,600 cubic kilometres (620 cu mi) of Lund Tuff.[8][38]
  • Ute Creek (size: 8 km wide), San Juan volcanic field, Colorado; 29 Ma; 500 cubic kilometres (120 cu mi) of Ute Ridge Tuff.[8][25]
  • Platoro calderas (size: 12 x 18 km), San Juan volcanic field, Platoro, Conejos County, Colorado; 29.5 Ma; 500 cubic kilometers (120 cu mi) of Black Mountain Tuff.[8][36][37]
  • Indian Peak, Eastern Nevada; 29.5 Ma; more than 3,200 cubic kilometers (768 cu mi) of Wah Wah Springs Tuff.[8][39]
  • Platoro calderas (size: 18 x 22 km), San Juan volcanic field, Platoro, Conejos County, Colorado; 30 Ma; 592 cubic kilometers (142 cu mi) of La Jara Canyon Tuff.[8][29][36]
  • Goodsight-Cedar Hills volcano-tectonic depression (Bell Top Formation), south-central New Mexico; 30.5 Ma ±1.5, 295 cubic kilometres (71 cu mi) of tephra (Bell Top Formation).[8][40]
  • William's Ridge, Central Nevada; 31.4 Ma; 3,500 cubic kilometres (840 cu mi) of Windous Butte Tuff.[8][41]
  • North Pass Caldera, Cochetopa Hills, Central Colorado volcanic field; 32.25 Ma; 400 to 500 cubic kilometers (96 to 120 cu mi) of Saguache Creek Tuff.[8][42]
  • Organ Caldera (size: 16 km wide), Organ Mountains, New Mexico; 32 Ma, 500 cubic kilometres (120 cu mi) of Cueva Soledad Rhyolite.[8][40]
  • Chinati Caldera (size: 30 x 20 km), Chinati Mountains, Texas; 32.5 Ma ±0.5, 1,000 cubic kilometres (240 cu mi) of Mitchel Mesa Rhyolite.[8][43]
  • Bonanza (size: 12 km wide), Central Colorado volcanic field; Colorado; 32.5 Ma, more than 100 cubic kilometres (24 cu mi) of Bonanza Tuff.[8][44]
  • Cowboy Rim (size: 26 x 18 km), Animas Mountains, Hidalgo County, New Mexico; 33 Ma, 500 cubic kilometres (120 cu mi) of Gillespie Tuff.[8][45]
  • Emory Caldera (size: 25 x 55 km), Mogollon-Datil volcanic field, City of Rocks State Park; 33 Ma; VEI 8; 1,310 cubic kilometers (314 cu mi) of Kneeling Nun Tuff.[8][46][47][48][49]
  • Socorro Caldera (size: 25 x 35 km), Rio Grande rift, Socorro, New Mexico; 33 Ma, 500 cubic kilometres (120 cu mi) of Hells Mesa Rhyolite.[8][29][50]
  • Marshall Creek, Thirtynine Mile volcanic area, Central Colorado volcanic field; Colorado; 33.7 Ma; more than 100 cubic kilometres (24 cu mi) of Thorn Ranch Tuff.[8][51]
  • Mount Aetna (size: 10 km wide), Central Colorado volcanic field; Colorado; 33.81 Ma, 100 cubic kilometres (24 cu mi) of Badger Creek Tuff.[8][52]
  • Grizzly Peak Caldera (size: 12 km wide), Central Colorado volcanic field; Colorado; 34.31 Ma; 100 cubic kilometres (24 cu mi) of Grizzly Peak Rhyolite.[8][52]
  • Juniper Caldera (size: 25 km), Animas Mountains, Hidalgo County, New Mexico; 35 Ma; 500 cubic kilometres (120 cu mi) of Oak Creek Tuff.[8][45]
  • Mount Princeton (eroded), Central Colorado volcanic field; Colorado; 35.3 Ma ±0.6; more than 1,000 cubic kilometres (240 cu mi) of Wall Mountain Tuff.[8][44][53]
  • Davis Mountains, Texas; 35.35 Ma ±0.6; 210 cubic kilometres (50 cu mi) of tuffs of Wild Cherry, Lavas of Casket Mountain.[8][54]
  • Davis Mountains, Texas; 35.61 Ma ±0.09; 200 cubic kilometres (48 cu mi) of Barrel Springs Formation and ash flow tuff.[8][54]
  • Quitman Caldera (size: 15 x 10 km), Quitman Mountains, Hudspeth County, Texas; 36 Ma; 300 cubic kilometres (72 cu mi) of Square Peak Volcanics.[8][24]
  • Davis Mountains, Texas; 36.2 Ma ±0.6; 300 cubic kilometres (72 cu mi) of Mafic lavas.[8][54]
  • Davis Mountains, Texas; 36.33 Ma ±0.13; 150 cubic kilometres (36 cu mi) of tephra (Paisano Volcano).[8][54]
  • Davis Mountains, Texas; 36.51 Ma ±0.05; 210 cubic kilometres (50 cu mi) of Adobe Canyon and Limpia Formations.[8][54]
  • Davis Mountains (fissures), Texas; 36.82 Ma ±0.08; 1,250 cubic kilometres (300 cu mi) of Flood rhyolites, rhyolite domes, and Gomez Tuff.[8][54]
  • Muir Caldera (size: 26 x 18 km wide), Hidalgo County, New Mexico; 37 Ma; 300 cubic kilometres (72 cu mi) of Woodhaul Canyon tephra.[8][24][55]
  • Infernito Caldera (size: 12 km wide), Trans-Pecos, Texas; 37.5 Ma ±0.5; 70 to 100 cubic kilometers (17 to 24 cu mi) of Buckshot Tuff.[8][24]
  • Thomas Caldera (size: 16 x 25 km wide), Delta, Utah; 39 Ma; 400 cubic kilometres (96 cu mi) of Mount Laird Tuff.[8][24]
  • Twin Peaks Caldera (size: 20 km), Challis volcanic field, Custer, Idaho; 45 Ma, 500 cubic kilometres (120 cu mi) of Challis Creek Tuff.[8][56]
  • Van Horn cauldron complex (size: 34 x 48 km), Challis volcanic field, Custer, Idaho; 46 Ma ±0.6; unknown amount of Elis Creek Tuff.[8][57]
  • Silver Bell Caldera (size: 8 km wide), Arizona; 55.8 Ma ; unknown amount of Mount Laird Tuff.[8][58]
  • Silver Bell Caldera (size: 8 km wide), Arizona; 68 Ma; 150 cubic kilometres (36 cu mi) of Lithic Tuff.[8][24]
  • Tucson Mountain Caldera (size: 25 km wide), Tucson Mountains, Arizona; 73 Ma; 500 cubic kilometres (120 cu mi) of Cat Mountain Tuff.[8][28][59]

References

  1. Smith, R.L. and Luedke, R.G. (1984).
  2. McKee, E. H. (1971).
  3. "Northwest Origins, An Introduction to the Geologic History of Washington State, Catherine L. Townsend and John T. Figge". The Burke Museum of Natural History and Culture, University of Washington. Retrieved 2010-04-10.
  4. "Oregon: A Geologic History". Oregon Department of Geology and Mineral Industries. Retrieved 2010-03-26.
  5. "Digital Geology of Idaho, Laura DeGrey and Paul Link". Idaho State University. Retrieved 2010-04-10.
  6. Chapin, C.E.; Wilks, M. and McIntosh, W.C. (2004).
  7. Hildreth, W. (1979), Sarna-Wojcicki et al. (2000).
  8. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 Supplementary Table to P.L. Ward (2009).
  9. 1 2 Izett, Glen A. (1981).
  10. Heiken et al. (1990).
  11. Min et al. (2004).
  12. Valles Caldera
  13. Rytuba, James J. et al. (2004).
  14. Matthew A. Coble, and Gail A. Mahood (2008).
  15. Noble, D.C. (1988).
  16. Castor, S.B., and Henry, C.D. (2000).
  17. Korringa, Marjorie K. (1973).
  18. Matthew E. Brueseke and William K. Hart (2008).
  19. 1 2 "High Lava Plains Project, Geophysical & Geological Investigation, Understanding the Causes of Continental Intraplate Tectonomagmatism: A Case Study in the Pacific Northwest". Department of Terrestrial Magnetism, Carnegie Institution of Washington. Archived from the original on 2010-06-18. Retrieved 2010-03-26.
  20. Tolan, T.L.; Reidel, S.P.; Beeson, M.H.; Anderson, J.L.; Fecht, K.R. & Swanson, D.A. (1989), "Revisions to the estimates of the areal extent and volume of the Columbia River Basalt Group", in Reidel, S.P. & Hooper, P.R., Volcanism and tectonism in the Columbia River flood basalt province Spec. Paper, 239, Geol. Soc. Amer., pp. 1–20
  21. Camp, V.E. & Ross, M.E. (2004). "Mantle dynamics and genesis of mafic magmatism in the intermontane Pacific Northwest". Journal of Geophysical Research. 109 (B08204). Bibcode:2004JGRB..10908204C. doi:10.1029/2003JB002838.
  22. Carlson, R.W. & Hart, W.K. (1987). "Crustal Genesis on the Oregon Plateau". J. Geophys. Res. 92: 6191–6206. Bibcode:1987JGR....92.6191C. doi:10.1029/JB092iB07p06191.
  23. Hart, W.K. & Carlson, R.W. (1985). "Distribution and geochronology of Steens Mountain-type basalts from the northwestern Great Basin". Isochron/West. 43: 5–10.
  24. 1 2 3 4 5 6 7 8 9 10 11 Lipman (1984).
  25. 1 2 3 Lipman (1976).
  26. Hon and Lipman (1976).
  27. "Volcanic Past Arizona". USGS. Retrieved 2010-03-30.
  28. 1 2 3 4 5 6 7 8 9 10 Lipman (2000).
  29. 1 2 3 4 5 Manson et al. (2004).
  30. Largest explosive eruptions: New results for the 27.8 Ma Fish Canyon Tuff and the La Garita caldera, San Juan volcanic field, Colorado Archived 2011-05-19 at the Wayback Machine.
  31. Bachmann et al. (2002).
  32. 1 2 Lipman et al. (1973).
  33. Steven and Lipman (1976).
  34. 1 2 3 4 Sawyer et al. (1984).
  35. 1 2 Ratté et al. (1984).
  36. 1 2 3 Lipman (1975).
  37. 1 2 Lipman et al. (1996).
  38. Maughan (2002).
  39. Best et al. (1989).
  40. 1 2 Seager (1973).
  41. Best (1993).
  42. Lipman and McIntosh (2008).
  43. Henry and Price (1984).
  44. 1 2 Lipman and Calvert (2003).
  45. 1 2 Erb (1979).
  46. Breining, Greg (2007). "Most-Super Volcanoes". Super Volcano: The Ticking Time Bomb Beneath Yellowstone National Park. St. Paul, MN: Voyageur Press. p. 256. ISBN 978-0-7603-2925-2.
  47. "Gila Wilderness Site". City of Rocks State Park. Retrieved 2010-05-15.
  48. Elston et al. (1975).
  49. "Gila Cliff Dwellings National Monument". New Mexico Bureau of Geology & Mineral Resources. Retrieved 2010-05-15.
  50. Osburn and Chapin (1983).
  51. Gregory and McIntosh (1996).
  52. 1 2 McIntosh and Chapin (2004).
  53. "Online guide to the continental Cretaceous-Tertiary boundary in the Raton basin, Colorado and New Mexico, Description of the Route from Denver to Raton". USGS. Retrieved 2010-03-30.
  54. 1 2 3 4 5 6 Henry et al. (1994).
  55. Deal et al. (1978).
  56. Hardyman (1981).
  57. Moye et al. (1988).
  58. Sawyer and Lipman (1983).
  59. "Geologic Setting – How the Tucson Valley and Surrounding Mountains Formed". Pima Community College. Retrieved 2010-05-15.

Sources

  • Askren, Daniel R.; Michael F. Roden; James A. Whitney (August 1997). "Petrogenesis of Tertiary Andesite Lava Flows Interlayered with Large-Volume Felsic Ash-Flow Tuffs of the Western USA" (PDF). Journal of Petrology. 38 (8): 1021–1046. Bibcode:1997JPet...38.1021A. doi:10.1093/petroj/38.8.1021. Archived from the original (PDF) on 2008-05-28. Retrieved 2010-04-01.
  • Ben G. Mason; David M. Pyle; Clive Oppenheimer (2004). "The size and frequency of the largest explosive eruptions on Earth". Bulletin of Volcanology. 66 (8): 735–748. Bibcode:2004BVol...66..735M. doi:10.1007/s00445-004-0355-9.
  • Best, M.G.; Christiansen, E.H. & Blank, R.H. Jr. (1989). "Oligocene caldera complex and calc-alkaline tuffs and lavas of the Indian Peak volcanic field, Nevada and Utah". Bull. Geol. Soc. Am. 101 (8): 1076–1090. Bibcode:1989GSAB..101.1076B. doi:10.1130/0016-7606(1989)101<1076:occaca>2.3.co;2.
  • Best, M.G.; Scott, R.B.; Rowley, P.D.; Swadley, W.C.; Anderson, R.E.; Gromme, C.S.; Harding, A.E.; Deino, A.L.; Christiansen, E.H.; Tingey, D.G. & Sullivan, K.R. (1993), "Oligocene–Miocene caldera complexes, ash-flow sheets, and tectonism in the central and southeastern Great Basin", in Lahren, M.M.; Trexler, J.H. & Spinosa, C., Crustal Evolution of the Great Basin and the Sierra Nevada, Field Trip Guidebook for Cordilleran/Rocky Mountain Sections of the Geol. Soc. Am., Reno: University of Nevada, pp. 285–312
  • Bove, D.J.; Hon, K.; Budding, K.E.; Slack, J.F.; Snee, L.W.; Yeoman, R.A. (2001). "Geochronology and geology of late Oligocene through Miocene volcanism and mineralization in the Western San Juan Mountains, Colorado". USGS Professional Paper. 1642: 1–30.
  • Matthew E. Brueseke & William K. Hart (2008). "Geology and Petrology of the Mid-Miocene Santa Rosa-Calico Volcanic Field, Northern Nevada" (PDF). Nevada Bureau of Mines and Geology Bulletin. 113: 44. Archived from the original (PDF) on 2010-06-07.
  • Castor, S.B. & Henry, C.D. (2000). "Geology, geochemistry, and origin of volcanic rock-hosted uranium deposits in northwest Nevada and southeastern Oregon, USA". Ore Geology Review. 16: 1–40. doi:10.1016/S0169-1368(99)00021-9.
  • Chapin, C.E.; Wilks, M.; McIntosh, W.C. (2004). "Space-time patterns of Late Cretaceous to present magmatism in New Mexico—comparison with Andean volcanism and potential for future volcanism" (PDF). New Mexico Bureau of Geology and Mineral Resources Bulletin. 160: 13–40. Archived from the original (PDF) on 2010-06-09. Retrieved 2010-04-29.
  • Matthew A. Coble & Gail A. Mahood (2008). New geologic evidence for additional 16.5–15.5 Ma silicic calderas in northwest Nevada related to initial impingement of the Yellowstone hot spot (PDF). Earth and Environmental Science 3. Collapse Calderas Workshop, IOP Conf. Series. doi:10.1088/1755-1307/3/1/012002. Retrieved 2010-03-23.
  • Deal, E.G.; Elston, W. E.; Elston, E.E.; Peterson, S.L.; Reiter, D. E. (1978). "Cenozoic volcanic geology of the Basin and Range province in Hidalgo County, southwestern New Mexico". New Mexico Geol. Soc. Guidebook 29th field conference: 219–229.
  • Elston, W.E.; Seager, W.R.; Clemons, R.E. (1975). "Emory cauldron, Black Range, New Mexico, source of the Kneeling Nun Tuff". Field Conf Guide, New Mexico Geological Society. 26: 283–292.
  • Erb, E.E. Jr. (1979). Petrologic and structural evolution of ash-flow tuff cauldrons and noncauldron related volcanic rocks in the Animas and southern Peloncillo Mountains, Hidalgo County, New Mexico. Alburquerque: University of New Mexico.
  • Farmer, G.L.; Broxton, D.E.; Warren, R.G.; Pickthorn, W. (1991). "Nd, Sr, and O isotopic variations in metaluminous ash-flow tuffs and related volcanic rocks at the Timber Mountains/Oasis Valley caldera complex, SW Nevada: implications for the origin and evolution of large-volume silicic magma bodies". Contributions to Mineralogy and Petrology. 109: 53–68. Bibcode:1991CoMP..109...53F. doi:10.1007/BF00687200.
  • Gregory, K.M. & McIntosh, W.C. (1996). "Paleoclimate and paleoelevation of the Oligocene Pitch-Pinnacle flora, Sawatch Range, Colorado". Bull. Geol. Soc. Am. 108 (5): 545–561. Bibcode:1996GSAB..108..545G. doi:10.1130/0016-7606(1996)108<0545:papoto>2.3.co;2.
  • Hardyman, R.F. (1981). "Twin Peaks caldera of central Idaho". Montana Geological Society 1981 Field Conference on Southwest Montana: 317–322.
  • Heiken, G.; Goff, F.; Gardner, J.N.; Baldridge, W.S.; Hulen, J.B.; Nielson, D.L.; Vaniman, D. (1990). "The Valles/Toledo Caldera Complex, Jemez Volcanic Field, New Mexico". Annu. Rev. Earth Planet. Sci. 18: 27–53. Bibcode:1990AREPS..18...27H. doi:10.1146/annurev.ea.18.050190.000331.
  • Henry, C.D.; Kunk, M.J.; McIntosh, W.C. (1994). "40 Ar/ 39 Ar chronology and volcanology of silicic volcanism in the Davis Mountains, Trans-Pecos Texas". Geological Society of America Bulletin. 106 (11): 1359–1376. Bibcode:1994GSAB..106.1359H. doi:10.1130/0016-7606(1994)106<1359:aacavo>2.3.co;2.
  • Henry, C.D. & Price, J.G. (1984). "Variations in caldera development in the Tertiary volcanic field of trans-Pecos Texas". J. Geophys. Res. 89: 8765–8786. Bibcode:1984JGR....89.8765H. doi:10.1029/JB089iB10p08765.
  • Hildreth, W. (1979). "The Bishop Tuff: Evidence for the origin of compositional zonation in silicic magma chambers". Geol. Soc. Am. Spec. Pap. Geological Society of America Special Papers. 180: 43–75. doi:10.1130/spe180-p43. ISBN 0-8137-2180-6.
  • Izett, Glen A. (1981). "Volcanic Ash Beds: Recorders of Upper Cenozoic Silicic Pyroclastic Volcanism in the Western United States". Journal of Geophysical Research. 86 (B11): 10200–10222. Bibcode:1981JGR....8610200I. doi:10.1029/JB086iB11p10200.
  • Korringa, Marjorie K. (December 1973). "Linear vent area of the Soldier Meadow Tuff, an ash-flow sheet in northwestern Nevada". Geological Society of America Bulletin. 84 (12): 3849–3866. Bibcode:1973GSAB...84.3849K. doi:10.1130/0016-7606(1973)84<3849:LVAOTS>2.0.CO;2.
  • Latta, J. (1983). "Geochemistry and petrology of the ash flows of Chiricahua National Monument, Arizona and their relation to the Turkey Creek Caldera": 194.
  • Maughan, Larissa L.; Christiansen, Eric H.; Best, Myron G.; Grommé, C. Sherman; Deino, Alan L.; Tingey, David G. (2002). "The Oligocene Lund Tuff, Great Basin, USA: a very large volume monotonous intermediate". J. Volcanol. Geotherm. Res. 113 (1–2): 129–157. Bibcode:2002JVGR..113..129M. doi:10.1016/s0377-0273(01)00256-6. Retrieved 2010-04-01.
  • McIntosh, W.C. & Chapin, C.E. (2004). "Geochronology of the central Colorado volcanic field". Bull. New Mexico Bur. Geol. Min. Res. 160: 205–237.
  • McKee, E. H. (1971). "Tertiary Igneous Chronology of the Great Basin of Western United States–Implications for Tectonic Models". Geological Society of America Bulletin. 82 (12): 3497–3502. Bibcode:1971GSAB...82.3497M. doi:10.1130/0016-7606(1971)82[3497:ticotg]2.0.co;2. Retrieved 2010-04-09.
  • Morgan, L.A.; Doherty, D.J.; Leeman, W.P. (1984). "Ignimbrites of the Eastern Snake River Plain: evidence for major caldera-forming eruptions". J. Geophys. Res. 89: 8665–8678. Bibcode:1984JGR....89.8665M. doi:10.1029/JB089iB10p08665.
  • Moye, F.J.; Hackett, W.R.; Blakley, J.D.; Snider, L.G. (1988). "Regional geologic setting and volcanic stratigraphy of the Challis Volcanic Field, Central Idaho". Idaho Geological Survey Bulletin. 27: 87–97.
  • Noble, D.C. (1988), "Cenozoic volcanic rocks of the northwestern Great Basin: an overview", Spring Field Trip Guidebook, Special Publication No. 7, Geological Society of Nevada, pp. 31–42
  • Osburn, G.R. & Chapin, C.E. (1983). "Ash-flow tuffs and cauldrons in the northeast Mogollon-Datil volcanic field: A summary". Field Conference Guide of the New Mexico Geological Society. 34: 197–204.
  • Min, K.; Reiners, P.W.; Nicolescu, S.; Wolff, J.A.; Mundil, R.; Winters, L.R. (2004). "(U-Th)/He dating of volcanic phenocrysts with high-(U-Th) inclusions, Bandelier Tuff, New Mexico". Eos, Transactions, American Geophysical Union. 85 (Abstract V43E–1450): V43E–1450. Bibcode:2004AGUFM.V43E1450M.
  • Sawyer, David A.; R. J. Fleck; M. A. Lanphere; R. G. Warren; D. E. Broxton & Mark R. Hudson (October 1994). "Episodic caldera volcanism in the Miocene southwestern Nevada volcanic field: Revised stratigraphic framework, 40Ar/39Ar geochronology, and implications for magmatism and extension". Geological Society of America Bulletin. 106 (10): 1304–1318. Bibcode:1994GSAB..106.1304S. doi:10.1130/0016-7606(1994)106<1304:ECVITM>2.3.CO;2. Retrieved 2010-03-26.
  • Ratté, J.C.; Marvin, R.F.; Naeser, C.W. (1984). "Calderas and ash flow tuffs of the Mogollan Mountains, southwestern New Mexico". J. Geophys. Res. 89: 8713–8732. Bibcode:1984JGR....89.8713R. doi:10.1029/JB089iB10p08713.
  • Rytuba, James J.; John, David A.; McKee, Edwin H. (May 3–5, 2004). "Volcanism Associated with Eruption of the Steens Basalt and Inception of the Yellowstone Hotspot". Rocky Mountain (56th Annual) and Cordilleran (100th Annual) Joint Meeting Paper. No. 44-2. Retrieved 2010-03-26.
  • Sarna-Wojcicki, A.M.; Pringle, M.S.; Wijbrans, J. (2000). "New 40Ar/39Ar age of the Bishop Tuff from multiple sites and sediment rate calibration for the Matuyama-Brunhes boundary". J. Geophys. Res. 105: 21431–21443. Bibcode:2000JGR...10521431S. doi:10.1029/2000JB900091.
  • Seager, W.R. (1973). "Resurgent volcano-tectonic depression of Oligocene age, south-central New Mexico". Bull. Geol. Soc. Am. 84 (11): 3611–3626. Bibcode:1973GSAB...84.3611S. doi:10.1130/0016-7606(1973)84<3611:rvdooa>2.0.co;2.
  • Seager, W.R. (1981). "Geology of Oregon Mountains and southern San Andreas Mountains, New Mexico". Memoir of the New Mexico Bureau of Mineral Resources. 36: 1–97.
  • Sigurdsson, H. (2000), "Volcanic episodes and rates of volcanism", in Sigurdsson, H., Encyclopedia of volcanoes, San Diego: Academic Press, pp. 271–279
  • Smith, R.L. & Luedke, R.G. (1984). "Potentially active volcanic lineaments and loci in western conterminous United States". Explosive Volcanism: Inception, Evolution, and Hazard. National Research Council, Geophysics Study Committee. pp. 47–66.
  • Steven, T.A. & Ratte, J.C. (1965). "Geology and structural control of ore deposition in the Creede district, San Juan Mountains, Colorado". USGS Professional Paper. 487: 90.
  • Varga, R.J. & Smith, B.M. (1984). "Evolution of the early oligocene Bonanza caldera, northeast San Juan volcanic field, Colorado". J. Geophys. Res. 89: 8679–8694. Bibcode:1984JGR....89.8679V. doi:10.1029/JB089iB10p08679.
  • Ward, Peter L. (2 April 2009). "Sulfur Dioxide Initiates Global Climate Change in Four Ways" (PDF). Thin Solid Films. 517 (11): 3188–3203. Bibcode:2009TSF...517.3188W. doi:10.1016/j.tsf.2009.01.005. Archived from the original (PDF) on 20 January 2010. Retrieved 2010-03-19.
    • "Supplementary Table to P.L. Ward, Thin Solid Films (2009) Major volcanic eruptions and provinces" (PDF). Teton Tectonics. Archived from the original (PDF) on 2010-01-20. Retrieved 2010-03-16.
    • "Supplementary References to P.L. Ward, Thin Solid Films (2009)" (PDF). Teton Tectonics. Archived from the original (PDF) on 2010-01-20. Retrieved 2010-03-16.

Columbia River Basalt Province-sources

  • Brueseke, M.E.; Heizler, M.T.; Hart, W.K. & S.A. Mertzman (15 March 2007). "Distribution and geochronology of Oregon Plateau (U.S.A.) flood basalt volcanism: The Steens Basalt revisited". Journal of Volcanology and Geothermal Research. 161 (3): 187–214. Bibcode:2007JVGR..161..187B. doi:10.1016/j.jvolgeores.2006.12.004.
  • Camp, V.E. & Ross, M.E. (2000). "Mapping the Steens-Columbia River Basalt Connection: Implications for the extent, volume, and magma supply rate of CRB volcanism". Geol. Soc. Am. Abstracts with Programs Annual meeting, Reno. 32: A159.
  • Carson, Robert J.; Pogue, Kevin R. (1996). Flood Basalts and Glacier Floods:Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington. Washington State Department of Natural Resources (Washington Division of Geology and Earth Resources Information Circular 90). ISBN none.
  • Jarboe, N.A.; Coe, R.S.; Renne, P.R.; Glen, J.M. (2006). "40Ar/39Ar ages of the Early Columbia River Basalt Group: Determining the Steens Mountain Geomagnetic Polarity Reversal (R0-N0) as the top of the C5Cr Chron and the Imnaha Normal (N0) as the C5Cn.3n Chron". Eos, Transactions, American Geophysical Union. 87 (Abstract V51D–1702): V51D–1702. Bibcode:2006AGUFM.V51D1702J.
  • Camp, Victor E.; Martin E. Ross; William E. Hanson (January 2003). "Genesis of flood basalts and Basin and Range volcanic rocks from Steens Mountain to the Malheur River Gorge, Oregon". Geological Society of America Bulletin. 115 (1): 105–128. Bibcode:2003GSAB..115..105C. doi:10.1130/0016-7606(2003)115<0105:gofbab>2.0.co;2. Retrieved 2010-03-30.
  • Reidel, Stephen P. (January 2005). A Lava Flow without a Source: The Cohasset Flow and Its Compositional Members. The Journal of Geology, Volume 113, Pp 1 – 21. ISBN none.
  • Web citations:
    • "Southeast Oregon Basin and Range". SummitPost.org. Retrieved 2010-03-30.
    • "Andesitic and basaltic rocks on Steens Mountain". USGS. Retrieved 2010-03-30.
    • "Oregon: A Geologic History. 8. Columbia River Basalt: the Yellowstone hot spot arrives in a flood of fire". Oregon Department of Geology and Mineral Industries. Retrieved 2010-03-26.

Peter W. Lipman – sources

  • Lipman, Peter W. (1969). "Alkalic and tholeiitic basaltic volcanism related to the Rio Grande Depression, Southern Colorado and Northern New Mexico". Geological Society of America Bulletin. 80 (7): 1343–1354. Bibcode:1969GSAB...80.1343L. doi:10.1130/0016-7606(1969)80[1343:aatbvr]2.0.co;2.
  • Lipman, Peter W.; Prostka, H.J.; Christiansen, R.L. (1972). "Cenozoic volcanism and plate-tectonic evolution of the Western United States: I. Early and middle Cenozoic". Royal Society of London Philosophical Transactions ser. A. 271 (1213): 217–248. Bibcode:1972RSPTA.271..217L. doi:10.1098/rsta.1972.0008. JSTOR 74007.
  • R. L. Christiansen & P. W. Lipman (1972). "Cenozoic Volcanism and Plate-Tectonic Evolution of the Western United States. II. Late Cenozoic". Royal Society of London Philosophical Transactions ser. A. 271 (1213): 249–284. Bibcode:1972RSPTA.271..249C. doi:10.1098/rsta.1972.0009. JSTOR 74008.
  • Lipman, Peter W.; Steven, T.A.; Luedke, R.G.; Burbank, W.S. (1973). "Revised volcanic history of the San Juan, Uncompahgre, Silverton, and Lake City calderas in the western San Juan Mountains, Colorado". J. Res. U. S. Geol. Surv. 1: 627–642.
  • Lipman, Peter W. (1975). "Evolution of the Platoro caldera complex and related volcanic rocks, southeastern San Juan Mountains, Colorado". USGS Professional Paper. 852: 1–128.
  • Lipman, Peter W. (1976). "Caldera-collapse breccias in the western San Juan Mountains, Colorado". Geol. Soc. Am. Bull. 87 (10): 1397–1410. Bibcode:1976GSAB...87.1397L. doi:10.1130/0016-7606(1976)87<1397:cbitws>2.0.co;2.
  • Steven, T.A. & Lipman, Peter W. (1976). "Calderas of the San Juan volcanic field, southwestern Colorado". USGS Professional Paper. 958: 35.
  • Lipman, Peter W. & Mehnert, H.H. (1979), "The Taos Plateau volcanic field, northern Rio Grande rift, New Mexico", in Riecker, R.E., Rio Grande rift – Tectonics and magmatism, Washington, D.C.: American Geophysical Union, pp. 289–311
  • Sawyer, D.A. & Lipman, Peter W. (1983). "Silver Bell Mountains, Arizona- porphyry copper mineralization in a late Cretaceous caldera". Eos, Transactions, American Geophysical Union. 64: 874.
  • Lipman, Peter W. (September 30, 1984). "The Roots of Ash Flow Calderas in Western North America: Windows Into the Tops of Granitic Batholiths" (PDF). Journal of Geophysical Research. 89 (B10): 8801–8841. Bibcode:1984JGR....89.8801L. doi:10.1029/JB089iB10p08801. Retrieved 2010-04-27.
  • Lipman, Peter W.; Mehnert, H.H.; Naeser, C.W (1986). "Evolution of the Latir volcanic field, northern New Mexico, and its relation to the Rio Grande rift, as indicated by potassium-argon and fission track dating". Journal of Geophysical Research. 91: 6329–6345. Bibcode:1986JGR....91.6329L. doi:10.1029/JB091iB06p06329.
  • Thompson, R.A.; Dungan, M.A.; Lipman, Peter W. (1986). "Multiple differentiation processes in early-rift calc-alkaline volcanics, northern Rio Grande rift, New Mexico". Journal of Geophysical Research. 91: 6046–6058. Bibcode:1986JGR....91.6046T. doi:10.1029/JB091iB06p06046.
  • Lipman, Peter W. & Reed, J.C. Jr. (1989). "Geologic map of the Latir volcanic field and adjacent areas, northern New Mexico". U.S. Geological Survey Miscellaneous Investigations Series. Map I-1907 (Scale 1:48000).
  • Hon, K. & Lipman, Peter W. (1989), "Western San Juan caldera complex", in Lipman, Peter W., Excursion 16B: Oligocene-Miocene San Juan volcanic field, Colorado, 46, New Mexico Bureau of Mines and Mineral Resources Memoir, pp. 350–380
  • Lipman, Peter W. & W. S. Baldridge (1990), "Taos, New Mexico", in C. A. Wood & J. Kienle, Volcanoes of North America, Cambridge University Press, pp. 290–292
  • Lipman, Peter W. & Glazner, Allen F. (1991), "Introduction to middle Tertiary Cordilleran volcanism—Magma sources and relations to regional tectonics", Journal of Geophysical Research, 96 (B8): 13193–13199, Bibcode:1991JGR....9613193L, doi:10.1029/91JB01397
  • Lipman, Peter W.; Dungan, M.A.; Brown, L.L.; Deino, A.L. (1996). "Recurrent eruption and subsidence at the Platoro Caldera complex, southeastern San Juan volcanic field, Colorado; new tales from old tuffs". Geol. Soc. Am. Bull. 108 (8): 1039–1055. Bibcode:1996GSAB..108.1039L. doi:10.1130/0016-7606(1996)108<1039:reasat>2.3.co;2.
  • Lipman, Peter W. (2000), "Calderas", in Sigurdsson, H., Encyclopedia of volcanoes, San Diego: Academic Press, pp. 643–662, ISBN 0-12-643140-X
  • Olivier Bachmann; Michael A. Dungan; Peter W. Lipman (2002). "The Fish Canyon Magma Body, San Juan Volcanic Field, Colorado: Rejuvenation and Eruption of an Upper-Crustal Batholith". Journal of Petrology. 43 (8): 1469–1503. Bibcode:2002JPet...43.1469B. doi:10.1093/petrology/43.8.1469. Retrieved 2010-03-16.
  • Lipman, Peter W. & Calvert, A. (2003). "Southward migration of mid-Tertiary volcanism: Relations in the Cochetopa Area, North-Central San Juan Mountains, Colorado". Geol. Soc. Am. Abstracts with Programs. 35: 14.
  • Peter W. Lipman; William C. McIntosh (July 2008). "Eruptive and noneruptive calderas, northeastern San Juan Mountains, Colorado: Where did the ignimbrites come from?". Geological Society of America Bulletin. 120 (7–8): 771–795. Bibcode:2008GSAB..120..771L. doi:10.1130/B26330.1.

Maps

  • Overview map at Basin and Range Province.
  • Map of the Basin and Range Province
  • Map: Thelin and Pike (1991), Landforms of the conterminous United States – A digital shaded-relief portrayal, USGS Map I-2206
  • Global Positioning System (GPS) Time Series
  • Great Basin/Nevada
    • Steve Ludington; Dennis P. Cox; Kenneth W. Leonard & Barry C. Moring (1996), "Chapter 5, Cenozoic Volcanic Geology in Nevada", in Donald A. Singer, An Analysis of Nevada's Metal-Bearing Mineral Resources, Nevada Bureau of Mines and Geology, University of Nevada, retrieved 2010-03-23
    • Potter, Christopher J.; Dickerson, Robert P.; Sweetkind, Donald S.; Drake, Ronald M. II; Taylor, Emily M.; Fridrich, Christopher J.; San, Carma A. Juan; Day, Warren C. (2002). Geologic map of the Yucca Mountain region, Nye County, Nevada: U.S. Geological Survey Geologic Investigations Series. I-2755. Denver, Colorado: U.S. Geological Survey. Retrieved 2010-05-02.
    • Matthew E. Brueseke & William K. Hart (2008). Geology and Petrology of the Mid-Miocene Santa Rosa-Calico Volcanic Field, northern Nevada (PDF). Reno, Nevada: Mackay School of Earth Sciences and Engineering College of Science, University of Nevada. Archived from the original (PDF) on 2010-06-07. Retrieved 2010-05-04.
  • Great Basin/Utah
    • Rowley, Peter D.; Cunningham, Charles G.; Steven, Thomas A.; Workman, Jeremiah B.; Anderson, John J.; Theissen, Kevin M. (2002). Geologic Map of the Central Marysvale Volcanic Field, Southwestern Utah: U.S. Geological Survey Geologic Investigations Series. I-2645-A. Denver, Colorado: U. S. Geological Survey. Retrieved 2010-05-02.
  • Colorado
    • William C. McIntosh & Charles E. Chapin (2004). "Geochronology of the central Colorado volcanic field". Tectonics, geochronology, and volcanism in the Southern Rocky Mountains and Rio Grande rift (PDF). Socorro, NM 87801: New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology. pp. 205–238. Archived from the original (PDF) on 2010-06-09. Retrieved 2010-04-01.
    • Robinson, Joel E.; Dillon R. Dutton; David W. Ramsey; Peter W. Lipman; Tracey J. Felger (2006). Geologic Map of the Central San Juan Caldera Cluster, Southwestern Colorado: Geologic Investigations Series. I-2799. U.S. Geological Survey. Retrieved 2010-05-03.
  • New Mexico
    • "The Taos Plateau Volcanic Field". New Mexico Museum of Natural History and Science. Retrieved 2010-04-01.
    • Crumpler, L. S. & Lucas, S. G. (2001). "Volcanoes of New Mexico: An Abbreviated Guide For Non-Specialists" (PDF). Volcanology in New Mexico. New Mexico Museum of Natural History and Science Bulletin. 18: 5–15. Archived from the original (PDF) on 2007-03-21. Retrieved 2010-04-28.
    • Mogollon-Datil volcanic field
      • "Gila Cliff Dwellings National Monument". New Mexico Bureau of Geology & Mineral Resources. Retrieved 2010-04-29. citing from Chapin, C.E.; McIntosh, W.C. & Chamberlin, R.M. (2004), "The Late Eocene—Oligocene peak of Cenozoic volcanism in southwestern New Mexico", in Mack, G.H. & Giles, K.A., The Geology of New Mexico, a Geologic History, 11, New Mexico Geological Society Special Publication, pp. 271–294
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.