Electron affinity (data page)

This page deals with the electron affinity as a property of isolated atoms or molecules (i.e. in the gas phase). Solid state electron affinities are not listed here.

Elements

Electron affinity can be defined in two equivalent ways. First, as the energy that is released by adding an electron to an isolated gaseous atom. The second (reverse) definition is that electron affinity is the energy required to remove an electron from a singly charged gaseous negative ion. Either convention can be used.[1] Whereas ionization energies are always concerned with the formation of positive ions, electron affinities are the negative ion equivalent.

Negative electron affinities can be used in those cases where electron capture requires energy, i.e. when capture can occur only if the impinging electron has a kinetic energy large enough to excite a resonance of the atom-plus-electron system. Conversely electron removal from the anion formed in this way releases energy, which is carried out by the freed electron as kinetic energy. Negative ions formed in these cases are always unstable. They may have lifetimes of the order of microseconds to milliseconds, and invariably autodetach after some time.

ZElementNameElectron affinity (eV)Electron affinity (kJ/mol)References
1 1H Hydrogen0.754 195(19)72.769(2)[2]
1 2H Deuterium0.754 59(8)72.807(8)[2]
2HeHelium-0.52-50estimated (est.)[3]
3LiLithium0.618 049(22)59.632 6(21)[4]
4BeBeryllium-0.52-50est.[3]
5BBoron0.279 723(25)26.989(3)[5]
6 12C Carbon1.262 122 6(11)121.776 3(1)[6]
6 13C Carbon1.2621136(12)121.775 5(2)[6]
7NNitrogen-0.000 725-0.07[3]
7NNitrogen-6.975-673[7]
7N−2Nitrogen-11.09-1070[7]
8 16O Oxygen1.461 113 6(9)140.976 0(2)[8]
8 17O Oxygen1.461 108 (4)140.975 5(4)[9]
8 18O Oxygen1.461 105(3)140.975 2(3)[9]
8OOxygen-7.711-744[7]
9FFluorine3.401 189 8(25)328.164 9(3)[10][11]
10NeNeon-1.2-120est.[3]
11NaSodium0.547 926(25)52.867(3)[12]
12MgMagnesium-0.415-40est.[3]
13AlAluminium0.432 83(5)41.762(5)[13]
14SiSilicon1.389 521 2(8)134.068 4(1)[8]
15PPhosphorus0.746 607(10)72.037(1)[14]
15PPhosphorus-4.85-468[7]
15P−2Phosphorus-9.183-886[7]
16 32S Sulfur2.077 104 2(6)200.410 1(1)[8]
16 34S Sulfur2.077 104 5(12)200.410 1(2)[15]
16SSulfur-4.726-456[7]
17ClChlorine3.612 724(27)348.575(3)[16]
18ArArgon-1.0-96est.[3]
19KPotassium0.501 459(13)48.383(2)[17]
20CaCalcium0.024 55(1)2.37(1)[18]
21ScScandium0.188(20)18(2)[19]
22TiTitanium0.084(9)8(1)[20]
23VVanadium0.527 66(20)50.911(20)[21]
24CrChromium0.675 84(12)65.21(2)[22]
25MnManganese-0.52-50est.[3]
26FeIron0.153 236(34)14.785(4)[23]
27CoCobalt0.662 26(5)63.898(5)[24]
28NiNickel1.157 16(12)111.65(2)[25]
29CuCopper1.235 78(4)119.235(4)[22]
30ZnZinc-0.62-60est.[3]
31GaGallium0.43(3)41(3)[26]
32GeGermanium1.232 676 4(13)118.935 2(2)[27]
33AsArsenic0.804 8(2)77.65(2)[28]
34SeSelenium2.020 604 7(12)194.958 7(2)[29]
35BrBromine3.363 588(3)324.537 0(3)[10]
36KrKrypton-0.62-60est.[3]
37RbRubidium0.485 916(21)46.884(3)[30]
38SrStrontium0.052 06(6)5.023(6)[31]
39YYttrium0.307(12)29.6(12)[19]
40ZrZirconium0.433 341.81[32]
41NbNiobium0.917 40(6)88.516 9(7)[33]
42MoMolybdenum0.747 3(3)72.10(3)[22]
43TcTechnetium0.55(20)53.067est.[34]
44RuRuthenium1.046 38(25)100.96(3)est.[35]
45RhRhodium1.142 89(20)110.27(2)[25]
46PdPalladium0.562 14(12)54.24(2)[25]
47AgSilver1.304 47(3)125.862(3)[22]
48CdCadmium-0.725-70est.[3]
49InIndium0.3(2)28.95[34]
50SnTin1.112 070(2)107.298 4(3)[36]
51SbAntimony1.047 401(19)101.059(2)[37]
52TeTellurium1.970 875(7)190.161(1)[38]
53IIodine3.059 046 5(38)295.1531(4)[39]
54XeXenon-0.83-80est.[3]
55CsCaesium0.471 630(25)45.505(3)[12][40]
56BaBarium0.144 62(6)13.954(6)[41]
57LaLanthanum0.47(2)45.3[34]
58CeCerium0.65(3)62.75[34]
59PrPraseodymium0.962(24)93(3)[42]
60NdNeodymium1.916184.87min. value[34]
61PmPromethium0.12912.45[43]
62SmSamarium0.16215.63[43]
63EuEuropium0.864(24)83.36[34]
64GdGadolinium0.13713.22[43]
65TbTerbium1.165112.4min. value[34]
66DyDysprosium0.35233.96min. value[34]
67HoHolmium0.33832.61[43]
68ErErbium0.31230.10[43]
69TmThulium1.029(22)99(3)[44]
70YbYtterbium-0.02-1.93est.[34]
71LuLutetium0.346(14)33.4(15)[45][46]
72HfHafnium0.0171.64est.[34]
73TaTantalum0.323(12)31(2)[47]
74WTungsten0.816 26(8)78.76(1)[48]
75ReRhenium0.060 396(63)5.8273(61)[49]
76OsOsmium1.1(2)106.1est.[34]
77IrIridium1.564 36(15)150.94(2)[50]
78PtPlatinum2.125 10(5)205.041(5)[50]
79AuGold2.308 610(25)222.747(3)[51]
80HgMercury-0.52-50est.[3]
81TlThallium0.377(13)36.4(14)[52]
82PbLead0.356 743(16)34.4204(15)[53]
83BiBismuth0.942 362(13)90.924(2)[54]
84PoPolonium1.9183.3est.[34]
85AtAstatine2.3221.9est.[55]
86RnRadon-0.725-70est.[3]
87FrFrancium0.48646.89est.[56][34]
88RaRadium0.109.6485est.[42][34]
89AcActinium0.3533.77est.[34]
90ThThorium1.17112.72est.[57]
91PaProtactinium0.5553.03est.[57]
92UUranium0.5350.94est.[57]
93NpNeptunium0.4845.85est.[57]
94PuPlutonium-0.50-48.33est.[57]
95AmAmericium0.109.93est.[57]
96CmCurium0.2827.17est.[57]
97BkBerkelium-1.72-165.24est.[57]
98CfCalifornium-1.01-97.31est.[57]
99EsEinsteinium-0.30-28.60est.[57]
100FmFermium0.3533.96est.[57]
101MdMendelevium0.9893.91est.[57]
102NoNobelium-2.33-223.22est.[57]
103LrLawrencium-0.31-30.04est.[57]
111RgRoentgenium1.565151.0calculated (calc.)[58]
113NhNihonium0.6966.6calc.[59]
115McMoscovium0.36635.3calc.[59]
116LvLivermorium0.77674.9calc.[59]
117TsTennessine1.719165.9calc.[59]
118OgOganesson0.056(10)5.403 18calc.[60]
119UueUnunennium0.66263.87calc.[56]
120UbnUnbinilium0.0212.03calc.[61]
121UbuUnbiunium0.5755calc.[34]

Molecules

The electron affinities Eea of some molecules are given in the table below, from the lightest to the heaviest. Many more have been listed by Rienstra-Kiracofe et al. (2002). The electron affinities of the radicals OH and SH are the most precisely known of all molecular electron affinities.

MoleculeNameEea (eV)Eea (kJ/mol)References
Diatomics
16OHHydroxyl1.827 6488(11)176.3413(2)Goldfarb et al. (2005)
16OD1.825 53(4)176.137(5)Schulz et al. (1982)
C2Dicarbon3.269(6)315.4(6)Ervin & Lineberger (1991)
BOBoron oxide2.508(8)242.0(8)Wenthold et al. (1997)
NONitric oxide0.026(5)2.5(5)Travers, Cowles & Ellison (1989)
O2Dioxygen0.450(2)43.42(20)Schiedt & Weinkauf (1995)
32SHSulfhydryl2.314 7283(17)223.3373(2)Chaibi et al. (2006)
F2Difluorine3.08(10)297(10)Janousek & Brauman (1979)
Cl2Dichlorine2.35(8)227(8)Janousek & Brauman (1979)
Br2Dibromine2.53(8)244(8)Janousek & Brauman (1979)
I2Diiodine2.524(5)243.5(5)Zanni et al. (1997)
IBrIodine bromide2.512(3)242.4(4)Sheps, Miller & Lineberger (2009)
LiClLithium chloride0.593(10)57.2(10)Miller et al. (1986)
FeOIron(II) oxide1.4950(5)144.25(6)Kim, Weichman & Neumark (2015)
Triatomics
NO2Nitrogen dioxide2.273(5)219.3(5)Ervin, Ho & Lineberger (1988)
O3Ozone2.1028(25)202.89(25)Novick et al. (1979)
SO2Sulfur dioxide1.107(8)106.8(8)Nimlos & Ellison (1986)
Larger polyatomics
CH2CHOVinyloxy1.8248(+2-6)176.07(+3-7)Rienstra-Kiracofe et al. (2002) after Mead et al. (1984)
C6H6Benzene-0.70(14)−68(14)Ruoff et al. (1995)
C6H4O2p-Benzoquinone1.860(5)179.5(6)Schiedt & Weinkauf (1999)
BF3Boron trifluoride2.65(10)256(10)Page & Goode (1969)
HNO3Nitric acid0.57(15)55(14)Janousek & Brauman (1979)
CH3NO2Nitromethane0.172(6)16.6(6)Adams et al. (2009)
POCl3Phosphoryl chloride1.41(20)136(20)Mathur et al. (1976)
SF6Sulfur hexafluoride1.03(5)99.4(49)Troe, Miller & Viggiano (2012)
C2(CN)4Tetracyanoethylene3.17(20)306(20)Chowdhury & Kebarle (1986)
WF6Tungsten hexafluoride3.5(1)338(10)George & Beauchamp (1979)
UF6Uranium hexafluoride5.06(20)488(20)NIST chemistry webbook after Borshchevskii et al. (1988)
C60Buckminsterfullerene2.6835(6)258.92(6)Huang et al. (2014)

Bibliography

  • Janousek, Bruce K.; Brauman, John I. (1979), "Electron affinities", in Bowers, M. T., Gas Phase Ion Chemistry, 2, New York: Academic Press, p. 53 .
  • Rienstra-Kiracofe, J.C.; Tschumper, G.S.; Schaefer, H.F.; Nandi, S.; Ellison, G.B. (2002), "Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations", Chem. Rev., 102, pp. 231–282, doi:10.1021/cr990044u .
  • Updated values can be found in the NIST chemistry webbook for around three dozen elements and close to 400 compounds.

Specific molecules

  • Adams, C.L.; Schneider, H.; Ervin, K.M.; Weber, J.M. (2009), "Low-energy photoelectron imaging spectroscopy of nitromethane anions: Electron affinity, vibrational features, anisotropies, and the dipole-bound state", J. Chem. Phys., 130: 074307, Bibcode:2009JChPh.130g4307A, doi:10.1063/1.3076892
  • Borshchevskii, A.Ya.; Boltalina, O.V.; Sorokin, I.D.; Sidorov, L.N. (1988), "Thermochemical quantities for gas-phase iron, uranium, and molybdenum fluorides, and their negative ions", J. Chem. Thermodyn., 20 (5): 523, doi:10.1016/0021-9614(88)90080-8
  • Chaibi, W.; Delsart, C.; Drag, C.; Blondel, C. (2006), "High precision measurement of the 32SH electron affinity by laser detachment microscopy", J. Mol. Spectrosc., 239: 11, Bibcode:2006JMoSp.239...11C, doi:10.1016/j.jms.2006.05.012
  • Chowdhury, S.; Kebarle, P. (1986), "Electron affinities of di- and tetracyanoethylene and cyanobenzenes based on measurements of gas-phase electron-transfer equilibria", J. Am. Chem. Soc., 108: 5453, doi:10.1021/ja00278a014
  • Ervin, K.M.; Ho, J.; Lineberger, W.C. (1988), "Ultraviolet photoelectron spectrum of nitrite anion", J. Phys. Chem., 92: 5405, doi:10.1021/j100330a017
  • Ervin, K.M.; Lineberger, W.C. (1991), "Photoelectron spectra of C
    2
    and C2H", J. Phys. Chem., 95: 1167, doi:10.1021/j100156a026
  • George, P.M.; Beauchamp, J.L. (1979), "The electron and fluoride affinities of tungsten hexafluoride by ion cyclotron resonance spectroscopy", Chem. Phys., 36: 345, Bibcode:1979CP.....36..345G, doi:10.1016/0301-0104(79)85018-1
  • Goldfarb, F.; Drag, C.; Chaibi, W.; Kröger, S.; Blondel, C.; Delsart, C. (2005), "Photodetachment microscopy of the P, Q, and R branches of the OH(v=0) to OH(v=0) detachment threshold", J. Chem. Phys., 122: 014308, Bibcode:2005JChPh.122a4308G, doi:10.1063/1.1824904
  • Huang, Dao-Ling; Dau, Phuong Diem; Liu, Hong-Tao; Wang, Lai-Sheng (2014), "High-resolution photoelectron imaging of cold C
    60
    anions and accurate determination of the electron affinity of C60", J. Chem. Phys., 140: 224315, Bibcode:2014JChPh.140v4315H, doi:10.1063/1.4881421
  • Kim, J.B.; Weichman, M.L.; Neumark, D.M. (2015), "Low-lying states of FeO and FeO by slow photoelectron spectroscopy", Mol. Phys., 113: 2105, Bibcode:2015MolPh.113.2105K, doi:10.1080/00268976.2015.1005706
  • Mathur, B.P.; Rothe, E.W.; Tang, S.Y.; Reck, G.P. (1976), "Negative ions from phosphorus halides due to cesium charge exchange", J. Chem. Phys., 65: 565, Bibcode:1976JChPh..65..565M, doi:10.1063/1.433109
  • Mead, R.D.; Lykke, K.R.; Lineberger, W.C.; Marks, J.; Brauman, J.I. (1984), "Spectroscopy and dynamics of the dipole-bound state of acetaldehyde enolate", J. Chem. Phys., 81: 4883, Bibcode:1984JChPh..81.4883M, doi:10.1063/1.447515
  • Miller, T.M.; Leopold, D.G.; Murray, K.K.; Lineberger, W.C. (1986), "Electron affinities of the alkali halides and the structure of their negative ions", J. Chem. Phys., 85: 2368, Bibcode:1986JChPh..85.2368M, doi:10.1063/1.451091
  • Nimlos, Mark R.; Ellison, G. Barney (1986), "Photoelectron spectroscopy of sulfur-containing anions (SO
    2
    , S
    3
    , and S2O)", J. Phys. Chem., 90: 2574, doi:10.1021/j100403a007
  • Novick, S.E.; Engelking, P.C.; Jones, P.L.; Futrell, J.H.; Lineberger, W.C. (1979), "Laser photoelectron, photodetachment, and photodestruction spectra of O
    3
    ", J. Chem. Phys., 70: 2652, Bibcode:1979JChPh..70.2652N, doi:10.1063/1.437842
  • Page, F. M.; Goode, G. C. (1969), Negative ions and the magnetron, John Wiley & Sons [62]
  • Ruoff, R.S.; Kadish, K.M.; Boulas, P.; Chen, E.C.M. (1995), "Relationship between the Electron Affinities and Half-Wave Reduction Potentials of Fullerenes, Aromatic Hydrocarbons, and Metal Complexes", J. Phys. Chem., 99: 8843, doi:10.1021/j100021a060
  • Schiedt, J.; Weinkauf, R. (1995), "Spin-orbit coupling in the O
    2
    anion", Z. Naturforsch. A, 50 (11): 1041, Bibcode:1995ZNatA..50.1041S, doi:10.1515/zna-1995-1110
  • Schiedt, J.; Weinkauf, R. (1999), "Resonant photodetachment via shape and Feshbach resonances: p-benzoquinone anions as a model system", J. Chem. Phys., 110: 304, Bibcode:1999JChPh.110..304S, doi:10.1063/1.478066
  • Schulz, P.A.; Mead, R.D.; Jones, P.L.; Lineberger, W.C. (1982), "OH and OD threshold photodetachment", J. Chem. Phys., 77: 1153, Bibcode:1982JChPh..77.1153S, doi:10.1063/1.443980
  • Sheps, L.; Miller, E.M.; Lineberger, W.C. (2009), "Photoelectron spectroscopy of small IBr(CO2)n(n=0–3) cluster anions", J. Chem. Phys., 131: 064304, Bibcode:2009JChPh.131a4304G, doi:10.1063/1.3157185
  • Travers, M.J.; Cowles, D.C.; Ellison, G.B. (1989), "Reinvestigation of the electron affinities of O2 and NO", Chem. Phys. Lett., 164: 449, Bibcode:1989CPL...164..449T, doi:10.1016/0009-2614(89)85237-6
  • Troe, J.; Miller, T.M.; Viggiano, A.A. (2012), "Communication:Revised electron affinity of SF6 from kinetic data", J. Chem. Phys., 136: 121102, Bibcode:2012JChPh.136b1102G, doi:10.1063/1.3698170
  • Wenthold, P.G.; Kim, J.B.; Jonas, K.-L.; Lineberger, W.C. (1997), "An Experimental and Computational Study of the Electron Affinity of Boron Oxide", J. Phys. Chem. A, 101: 4472, Bibcode:1997JPCA..101.4472W, doi:10.1021/jp970645u
  • Zanni, M.T.; Taylor, T.R.; Greenblatt, B.J.; Soep, B.; Neumark, D.M. (1997), "Characterization of the I
    2
    anion ground state using conventional and femtosecond photoelectron spectroscopy", J. Chem. Phys., 107: 7613, Bibcode:1997JChPh.107.7613Z, doi:10.1063/1.475110

References

  1. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version:  (2006) "Electron affinity".
  2. 1 2 Lykke K.R., Murray K.K. and Lineberger W.C. (1991). Threshold Photodetachment of H. Phys. Rev. A 43, 6104–7 doi:10.1103/PhysRevA.43.6104.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 Bratsch S.G. and Lagowski J.J. (1986). Predicted stabilities of monatomic anions in water and liquid ammonia at 298.15 K. Polyhedron 5:1763–1770 doi:10.1016/S0277-5387(00)84854-8.
  4. Haeffler G., Hanstorp D., Kiyan I., Klinkmüller A.E., Ljungblad U. and Pegg D.J. (1996a). Electron affinity of Li: A state-selective measurement. Phys. Rev. A 53:4127–31 doi:10.1103/PhysRevA.53.4127.
  5. Scheer M., Bilodeau R.C. and Haugen H.K. (1998). Negative ion of boron: An experimental study of the 3P ground state. Phys. Rev. Lett. 80:2562–65 doi:10.1103/PhysRevLett.80.2562.
  6. 1 2 Bresteau D., Drag C. and Blondel C. (2016). Isotope shift of the electron affinity of carbon measured by photodetachment microscopy. Phys. Rev. A 93 013414 doi:10.1103/PhysRevA.93.013414.
  7. 1 2 3 4 5 6 Rayner-Canham Appendix 5: Data summarised from J. E. Huheey et al., Inorganic Chemistry, 4th ed. (New York: HarperCollins, 1993)
  8. 1 2 3 Chaibi, W.; Peláez, R. J.; Blondel, C.; Drag, C.; Delsart, C. (2010). "Effect of a magnetic field in photodetachment microscopy". Eur. Phys. J. D. 58: 29. Bibcode:2010EPJD...58...29C. doi:10.1140/epjd/e2010-00086-7.
  9. 1 2 Blondel C., Delsart C., Valli C., Yiou S., Godefroid M.R. & Van Eck S. (2001). Electron affinities of 16 O, 17 O, 18 O, the fine structure of 16O, and the hyperfine structure of 17O. Phys. Rev. A 64 052504 doi:10.1103/PhysRevA.64.052504.
  10. 1 2 Blondel C., Cacciani P., Delsart C. and Trainham, R. (1989). High Resolution Determination of the Electron Affinity of Fluorine and Bromine using Crossed Ion and Laser Beams. Phys. Rev. A 40:3698–3701 doi:10.1103/PhysRevA.40.3698.
  11. Blondel C., Delsart C. and Goldfarb F. (2001). Electron spectrometry at the μeV level and the electron affinities of Si and F. Journal of Physics B 34:L281–88 doi:10.1088/0953-4075/34/9/101.
  12. 1 2 Hotop H. and Lineberger W.C. (1985). "Binding energies in atomic negative ions. II". J. Phys. Chem. Ref. Data 14:731 doi:10.1063/1.555735.
  13. Scheer M., Bilodeau R.C., Thøgersen J. and Haugen H.K. (1998b). Threshold Photodetachment of Al: Electron Affinity and Fine Structure. Phys. Rev. A 57:R1493–96 doi:10.1103/PhysRevA.57.R1493.
  14. Peláez R.J., Blondel C., Vandevraye M., Drag C. and Delsart C. (2011). Photodetachment microscopy to an excited spectral term and the electron affinity of phosphorus. J. Phys. B: At. Mol. Opt. Phys. 44, 195009 doi:10.1088/0953-4075/44/19/195009
  15. Carette T., Drag C., Scharf O., Blondel C., Delsart C., Fischer C. F. & Godefroid M. (2010). Isotope shift in the sulfur electron affinity: Observation and theory. Phys. Rev. A 81 042522 doi:10.1103/PhysRevA.81.042522.
  16. Berzinsh U., Gustafsson M., Hanstorp D., Klinkmüller A., Ljungblad U. and Martensson-Pendrill A.M. (1995). Isotope shift in the electron affinity of chlorine. Phys. Rev. A 51, 231 doi:10.1103/PhysRevA.51.231
  17. Andersson K.T., Sandstrom J., Kiyan I.Y., Hanstorp D. and Pegg D.J. (2000). Measurement of the electron affinity of potassium. Phys. Rev. A 62:022503 doi:10.1103/PhysRevA.62.022503.
  18. Petrunin V.V., Andersen H.H., Balling P. and Andersen T. (1996). Structural Properties of the Negative Calcium Ion: Binding Energies and Fine-structure Splitting. Phys. Rev. Lett. 76:744–47 doi:10.1103/PhysRevLett.76.744.
  19. 1 2 Feigerle C.S., Herman Z. and Lineberger W.C. (1981). Laser Photoelectron Spectroscopy of Sc and Y: A Determination of the Order of Electron Filling in Transition Metal Anions. Journal of Electron Spectroscopy and Related Phenomena 23:441–50 doi:10.1016/0368-2048(81)85050-5
  20. Ilin R.N., Sakharov V.I. and Serenkov I.T. (1987). "Study of Titanium Negative Ion Using Method of Electron Detachment by an Electric Field". Optics and Spectroscopy (USSR) 62:578.
  21. Fu X., Luo Z., Chen X., Li J. & Ning C. (2016). Accurate electron affinity of V and fine-structure splittings of V via slow-electron velocity-map imaging. J. Chem. Phys. 145, 164307 doi:10.1063/1.4965928
  22. 1 2 3 4 Bilodeau R.C., Scheer M. and Haugen H.K. (1998). Infrared Laser Photodetachment of Transition Metal Negative Ions: Studies on Cr, Mo, Cu, and Ag. Journal of Physics B 31:3885–91 doi:10.1088/0953-4075/31/17/013.
  23. Chen X., Luo Z., Li J. and Ning C. (2016). Accurate Electron Affinity of Iron and Fine Structures of Negative Iron ions. Sci. Rep. 6, 24996 doi:10.1038/srep24996.
  24. Chen X. and Ning C. (2016). Accurate electron affinity of Co and fine-structure splittings of Co via slow-electron velocity-map imaging. Phys. Rev. A 93, 052508 doi:10.1103/PhysRevA.93.052508.
  25. 1 2 3 Scheer M., Brodie C.A., Bilodeau R.C., Haugen H.K. (1998c). Laser spectroscopic measurements of binding energies and fine-structure splittings of Co, Ni, Rh, and Pd. Phys. Rev. A 58:2051–62 doi:10.1103/PhysRevA.58.2051
  26. Williams W.W., Carpenter D.L., Covington A.M., Koepnick M.C., Calabrese D. and Thompson J.S. (1998a). Laser photodetachment electron spectrometry of Ga. Journal of Physics B 31:L341–45 doi:10.1088/0953-4075/31/8/003.
  27. Bresteau D., Babilotte Ph., Drag C. and Blondel C. (2015). Intra-cavity photodetachment microscopy and the electron affinity of germanium. J. Phys. B: At. Mol. Opt. Phys. 48 125001 doi:10.1088/0953-4075/48/12/125001.
  28. Walter C. W., Gibson N. D., Field R. L., Snedden A. P., Shapiro J. Z., Janczak C. M. and Hanstorp D. (2009). Electron affinity of arsenic and the fine structure of As measured using infrared photodetachment threshold spectroscopy. Phys. Rev. A 80, 014501
  29. Vandevraye M., Drag C. and Blondel C. (2012). Electron affinity of selenium measured by photodetachment microscopy. Phys. Rev. A 85:015401 doi:10.1103/PhysRevA.85.015401.
  30. Frey P., Breyer F. and Hotop H. (1978). High Resolution Photodetachment from the Rubidium Negative Ion around the Rb(5p1/2) Threshold. J. Phys. B: At. Mol. Phys. 11, L589–94 doi:10.1088/0022-3700/11/19/005.
  31. Andersen H.H., Petrunin V.V., Kristensen P. and Andersen T. (1997). Structural properties of the negative strontium ion: Binding energy and fine-structure splitting. Phys. Rev. A 55:3247–49 doi:10.1103/PhysRevA.55.3247.
  32. Fu X., Li J., Luo Z., Chen X. and Ning C. (2017). Precision measurement of electron affinity of Zr and fine structures of its negative ions. J. Chem. Phys. 147, 064306 doi:10.1063/1.4986547.
  33. Luo Z., Chen X., Li J. & Ning C. (2016). Precision measurement of the electron affinity of niobium. Phys. Rev. A 93, 020501(R) doi:10.1103/PhysRevA.93.020501
  34. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 CRC Handbook of Chemistry and Physics 92nd Edn. (2011–2012); W. M. Haynes. Boca Raton, FL: CRC Press. "Section 10, Atomic, Molecular, and Optical Physics; Electron Affinities".
  35. Norquist P.L., Beck D.R., Bilodeau R.C., Scheer M., Srawley R.A. and Haugen H.K. (1999). Theoretical and experimental binding energies for the d7s2 4F levels in Ru, including calculated hyperfine structure and M1 decay rates. Phys. Rev. A 59:1896–1902 doi:10.1103/PhysRevA.59.1896.
  36. Vandevraye, M.; Drag, C.; Blondel, C. (2013). "Electron affinity of tin measured by photodetachment microscopy". Journal of Physics B: Atomic, Molecular and Optical Physics. 46 (12): 125002. Bibcode:2013JPhB...46l5002V. doi:10.1088/0953-4075/46/12/125002.
  37. Scheer M., Haugen H.K. and Beck D.R. (1997). Single- and Multiphoton Infrared Laser Spectroscopy of Sb: A Case Study. Phys. Rev. Lett. 79:4104–7 doi:10.1103/PhysRevLett.79.4104.
  38. Haeffler G., Klinkmüller A.E., Rangell J., Berzinsh U. and Hanstorp D. (1996b). The Electron Affinity of Tellurium. Z. Phys. D 38:211 doi:10.1007/s004600050085.
  39. Peláez R.J., Blondel C., Delsart C. and Drag C. (2009) J. Phys. B 42 125001 doi:10.1088/0953-4075/42/12/125001
  40. Scheer M., Thøgersen J., Bilodeau R.C., Brodie C.A. and Haugen H.K. (1998d). Experimental Evidence that the 6s6p 3PJ States of Cs are Shape Resonances. Phys. Rev. Lett. 80:684–87 doi:10.1103/PhysRevLett.80.684.
  41. Petrunin V.V., Volstad J.D., Balling P., Kristensen K. and Andersen T. (1995). Resonant Ionization Spectroscopy of Ba: Metastable and Stable Ions. Phys. Rev. Lett. 75:1911–14 doi:10.1103/PhysRevLett.75.1911.
  42. 1 2 Andersen, T. (2004). "Atomic negative ions: Structure, dynamics and collisions". Physics Reports. 394 (4–5): 157–313. Bibcode:2004PhR...394..157A. doi:10.1016/j.physrep.2004.01.001.
  43. 1 2 3 4 5 Felfli, Z.; Msezane, A.; Sokolovski, D. (2009). "Resonances in low-energy electron elastic cross sections for lanthanide atoms". Physical Review A. 79. Bibcode:2009PhRvA..79a2714F. doi:10.1103/PhysRevA.79.012714.
  44. Davis V.T. and Thompson J.S. (2002b). Measurement of the electron affinity of thulium. Phys. Rev. A 65:010501 doi:10.1103/PhysRevA.65.010501.
  45. Davis V.T. and Thompson J.S. (2001). Measurement of the electron affinity of lutetium. Journal of Physics B 34:L433–37 doi:10.1088/0953-4075/34/14/102.
  46. Davis V.T., Thompson J. and Covington A. (2005). Laser photodetachment electron spectroscopy studies of heavy atomic anions. Nucl. Instrum. Meth. B 241 118 doi:10.1016/j.nimb.2005.07.073.
  47. Feigerle C.S., Corderman R.R., Bobashev S.V. and Lineberger W.C. (1981). Binding energies and structure of transition metal negative ions. J. Chem. Phys. 74, 1580 doi:10.1063/1.441289.
  48. Lindahl A.O. et al. (2010). The electron affinity of tungsten. Eur. Phys. J. D 60, 219 doi:10.1140/epjd/e2010-00199-y
  49. Chen X.L. and Ning C.G. (2017).Observation of Rhenium Anion and Electron Affinity of Re. J. Phys. Chem. Lett. 8, 2735 doi:10.1021/acs.jpclett.7b01079.
  50. 1 2 Bilodeau R.C., Scheer M., Haugen H.K. and Brooks R.L. (1999). Near-threshold Laser Spectroscopy of Iridium and Platinum Negative Ions: Electron Affinities and the Threshold Law. Phys. Rev. A 61:012505 doi:10.1103/PhysRevA.61.012505.
  51. Andersen T., Haugen H.K. and Hotop H. (1999). Binding Energies in Atomic Negative Ions: III. J. Phys. Chem. Ref. Data 28, 1511 doi:10.1063/1.556047.
  52. Carpenter D.L., Covington A.M. and Thompson J.S. (2000). Laser Photodetachment Electron Spectroscopy of Tl. Phys. Rev. A 61:042501 doi:10.1103/PhysRevA.61.042501.
  53. Chen X.L. and Ning C.G (2016). Accurate electron affinity of Pb and isotope shifts of binding energies of Pb−. J. Chem. Phys. 145, 084303 doi:10.1063/1.4961654.
  54. Bilodeau R.C. and Haugen H.K. (2001). " Electron affinity of Bi using infrared laser photodetachment threshold spectroscopy". Phys. Rev. A 64:024501 doi:10.1103/PhysRevA.64.024501.
  55. Champion, J.; Seydou, M; Sabatie-Gogova, A.; Renault, E.; Montavon, G. and Galland, N. (2011), “Assessment of an effective quasirelativistic methodology designed to study astatine chemistry in aqueous solution”, Phys. Chem. Chem. Phys., 13: 14984–14992, doi:10.1039/C1CP20512A
  56. 1 2 Landau A., Eliav E., Ishikawa Y. and Kaldor U., "Benchmark calculations of electron affinities of the alkali atoms sodium to eka-francium (element 119)". J. Chem. Phys. 115 2389 (2001) doi:10.1063/1.1386413.
  57. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Guo Y. and Whitehead M.A. (1989). Electron affinities of alkaline-earth element calculated with the local-spin-density-functional theory. Phys. Rev. A 40:28–34 doi:10.1103/PhysRevA.40.28.
  58. Eliav, Ephraim; Fritzsche, Stephan; Kaldor, Uzi (2015). "Electronic structure theory of the superheavy elements". Nucl. Phys. A. 944: 518–550. Bibcode:2015NuPhA.944..518E. doi:10.1016/j.nuclphysa.2015.06.017.
  59. 1 2 3 4 Borschevsky, Anastasia; Pershina, Valeria; Kaldor, Uzi; Eliav, Ephraim. "Fully relativistic ab initio studies of superheavy elements" (PDF). www.kernchemie.uni-mainz.de. Johannes Gutenberg University Mainz. Archived from the original (PDF) on 15 January 2018. Retrieved 15 January 2018.
  60. Eliav, Ephraim; Kaldor, Uzi; Ishikawa, Y; Pyykkö, P (1996). "Element 118: The First Rare Gas with an Electron Affinity". Physical Review Letters. 77 (27): 5350–5352. Bibcode:1996PhRvL..77.5350E. doi:10.1103/PhysRevLett.77.5350. PMID 10062781.
  61. Borschevsky, A.; Pershina, V.; Eliav, E.; Kaldor, U. (2013). "Ab initio predictions of atomic properties of element 120 and its lighter group-2 homologues". Physical Review A. 87: 022502–1–8. Bibcode:2013PhRvA..87b2502B. doi:10.1103/PhysRevA.87.022502.
  62. According to NIST as concerns Boron trifluoride, the Magnetron method, lacking mass analysis, is not considered reliable.

See also

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.