Warmtepomp

Een warmtepomp is een apparaat dat warmte verplaatst of zelfs "oppompt" door middel van arbeid. De bekendste vorm is een koelkast. Maar als men het heeft over een warmtepomp wordt altijd een warmtepomp bedoeld die geïnstalleerd moet worden om gebouwen te verwarmen (of te koelen). Met een warmtepomp kunnen gebouwen efficiënt worden verwarmd maar de capaciteit wordt beperkt door o.a. de omvang van de installaties en het teruglopend rendement bij een hogere noodzakelijke condensortemperatuur. Voor elk systeem geldt dan ook dat goede isolatie noodzakelijk is.

Schematische tekening van een warmtepomp: 1 is de condensor, 2 de turbine (eventueel smoorventiel), 3 de verdamper, 4 is de compressor.

Toepassingen

Warmtepompen bij huurwoningen in Woerden

De meest voorkomende toepassing naast huishoudelijke apparaten zoals koelkast en vriezer is in de woningbouw en utiliteitsbouw waar de warmtepomp wordt gebruikt voor ruimteverwarming en koeling en bij woningbouw voor het aanmaken van warm tapwater. In die toepassing wordt de warmtepomp gezien als een vorm van duurzame energie waarbij lage temperatuur-omgevingswarmte uit de bodem of de lucht wordt gebruikt voor verwarmingsdoeleinden op een hoger niveau. Wanneer de bodem als bron voor de warmtepomp wordt gebruikt is veelal in de grotere kantoortoepassingen sprake van warmte- en koudeopslag met open bodembronnen en steeds meer met gesloten bronnen. Nederland is vooral op het gebied van toepassing in de bestaande woningbouw zeer innovatief. Nieuwe producten als de hybride warmtepomp, ventilatie-warmtepomp en booster-warmtepomp kunnen als typisch Nederlandse innovaties worden gezien, die Europees steeds meer navolging krijgen.

Ook in de glastuinbouw worden warmtepompen veelvuldig toegepast. Ook hier worden warmtepompen als duurzaam gezien. In de industrie met grote projecten in de chemische industrie en een sterke groei in de voedingsmiddelenindustrie is de warmtepomp een besparingsoptie. Een andere voorkomende toepassing is in koelkasten, waar de warmtepomp wordt gebruikt om de ruimte in de kast van warmte te onttrekken en zo te koelen. In dit soort toepassingen wordt de warmtepomp koelmachine genoemd. De ruimte buiten de koelkast wordt hierbij opgewarmd, zodat warmtepompen ook kunnen worden ingezet voor ruimteverwarming.

Werkingsprincipe

Alle soorten warmtepompen nemen bij lage temperatuur warmte op die bij hoge temperatuur weer wordt afgegeven. Volgens de Tweede Hoofdwet van de thermodynamica gaat dat niet vanzelf, zodat er een of andere vorm van arbeid aan te pas moet komen.

De meest voorkomende soorten warmtepompen werken door een vloeistof bij lage temperatuur te laten verdampen en de damp bij hoge temperatuur te laten condenseren. In het eerste geval moet het kookpunt dus worden verlaagd en/of in het tweede geval worden verhoogd. Het kookpunt kan worden verhoogd door de druk te verhogen met een compressor (pomp), aan de andere kant kan het kookpunt weer worden verlaagd door de druk te laten zakken in een turbine of (meestal) smoorventiel.

Het geheel van verdampen, comprimeren, condenseren en expanderen vormt een gesloten kringloop voor het rondstromende koudemiddel, de thermodynamische cyclus, maar niet voor de warmte en de arbeid: aan het systeem wordt netto arbeid toegevoerd (in de compressor) en er wordt warmte verplaatst van de verdamper naar de condensor. Daarnaast ontstaat er extra warmte, geluid en infraroodstraling; deze ongewenste bijproducten heten verlies en gaan ten koste van het rendement.

Er is energie nodig om de lage temperatuur-energie uit de bodem of omgevingslucht-energie naar een hoger niveau te brengen. Het rendement van een warmtepomp wordt uitgedrukt met de Engelse term Coefficient Of Performance (COP). Er zijn twee soorten, afhankelijk van het doel van de verplaatsing van de warmte. Als verwarming het doel is schrijft men COPh. met een h voor heat. Het is de geleverde nuttige warmte (de verplaatste warmte plus de warmte overeenkomend met de geleverde arbeid), gedeeld door de warmte overeenkomend met de geleverde arbeid. De waarde is dus groter dan 1.[1] Als de arbeid bijvoorbeeld geleverd wordt door gebruik van elektriciteit dan is de geleverde warmte per kWh dus groter dan bij een elektrische kachel, of anders gezegd, er zijn minder kWh nodig voor dezelfde geleverde warmte. Bij gebruik van grijze stroom is de CO2-uitstoot bij een warmtepomp dus minder dan bij een elektrische kachel. Als koeling het doel is schrijft men COP. Het is de weggenomen warmte, gedeeld door de warmte overeenkomend met de geleverde arbeid.

De COP bereikt waarden, afhankelijk van de toepassing, van 4,0 tot 4,6 en komt daarmee op een tweede plaats aan rendement na de WKK (of micro-WKK) die een COP van 9 heeft.[2]

Thermische aandrijving

Een absorptiewarmtepomp is een warmtepomp die werkt zonder compressor, in sommige gevallen zelfs geheel zonder bewegende delen (behalve het stromende fluïdum uiteraard). Zulke warmtepompen zijn bijvoorbeeld te vinden in gasgestookte koelkastjes voor op de camping. Een ander type warmtepomp is de adsorptiewarmtepomp. Een adsorptiewarmtepomp is gebaseerd op dezelfde techniek als een absorptiewarmtepomp, alleen werkt de adsorptiewarmtepomp met een vaste stof terwijl de absorptiewarmtepomp met een vloeistof werkt.

Een peltierelement zet elektrische stroom direct om in een warmtestroom tegen een temperatuurverschil.

Geschiedenis

De eerste warmtepomp werd al in het begin van 20e eeuw te Zürich in gebruik genomen, maar deze werd geen succes. Toen in de zeventiger jaren van de 20e eeuw de energiecrisis uitbrak, werd de warmtepomp gezien als een mogelijk grote energiebespaarder. Er werd dan ook veel onderzoek gedaan naar mogelijke varianten. Hieruit ontstond onder andere de gasgestookte warmtepomp die, zoals de naam al suggereert, op aardgas werkt. Dit zou dan ook een goede toepassing zijn geweest op de toen opkomende aardgasindustrie.

Maar door de sterke daling van de energieprijzen in 1985 werden de meeste onderzoeken stopgezet. De warmtepompindustrie bleek ineens niet meer rendabel. Pas in 1990 begonnen politici in te zien dat niet zozeer het opraken van de energievoorraden een probleem was maar dat het milieu de stijgende vervuiling niet meer aankon. Hierdoor werd het debat over de alternatieve energiebronnen weer aangeslingerd, en daarmee het onderzoek naar de warmtepomp. Dit werd mede gesteund door de stijgende energieprijzen en het bijbehorende financiële voordeel.

Een van de problemen was het gebruikte koudemiddel. De vroeger gebruikte middelen bleken giftig en een bijdrage te leveren aan de afbraak van de ozonlaag en aan het versterkte broeikaseffect. Een groot probleem bij de keuze van nieuwe middelen was de interactie met het gebruikte smeermiddel. Onder de opvolgers bevinden zich onder meer CO2 en alkanen (propaan en isobutaan).

Op dit moment is de commercialisering van bepaalde projecten volop aan de gang zodat de kostprijs van de installaties omlaag gaat. Dit kan, samen met een stijging van de energieprijzen, zorgen voor een kortere terugverdientijd. Toch blijven onderzoekers verder zoeken naar nieuwe technieken om de grote doorbraak te realiseren.

Techniek

De werking van een warmtepomp met koudemiddel is in wezen die van een koelkast. Bij een koelkast wordt door de verdamper warmte onttrokken aan de te koelen producten, en wordt dit via de condensor afgegeven aan de buitenlucht. Bij een warmtepomp wordt deze warmte onttrokken aan elementen van het milieu (bodem, lucht, water...) en naar het verwarmingssysteem gevoerd. Het kringproces van het koelmiddel gebeurt volgens eenvoudige natuurkundige wetten. Het koudemiddel, een vloeistof die reeds op lage temperatuur kookt, loopt in een kring en wordt achtereenvolgens verdampt, gecomprimeerd, gecondenseerd en geëxpandeerd.

Figuur 2: Temperatuur–entropiediagram
Drukverhoging in de compressor
In de eerste stap wordt het gasvormige koudemiddel samengeperst, meestal in een scroll-compressor. Hierbij loopt de temperatuur op tot boven die van de te verwarmen ruimte. De hete damp stroomt naar de condensor.
Warmteafgifte in de condensor
In de condensor (radiator) condenseert de damp tegen de relatief koude wand en geeft daarbij warmte af. De temperatuur waarbij dit gebeurt is afhankelijk van de druk: hoe hoger de druk, hoe hoger het kookpunt. De vloeistof wordt aan de onderzijde van het reservoir afgetapt en stroomt dan naar een smoorventiel.
Drukverlaging
In het smoorventiel of reduceerventiel stroomt de vloeistof door een nauwe opening waarachter de druk aanzienlijk lager is.
Warmteopname uit de omgeving
In de verdamper is de druk lager, zodat de vloeistof aan de kook raakt. De warmte die hiervoor nodig is wordt onttrokken aan de omgeving. De temperatuur waarbij dit gebeurt is afhankelijk van de heersende druk, die door de aanzuigende werking van de compressor laag wordt gehouden.

In de techniek wordt vaak een onderscheid gemaakt tussen warmtepompen en koelmachines. Warmtepompen worden gebruikt om warmte terug te winnen of bijvoorbeeld een huis te verwarmen. Koelmachines worden gebruikt om ruimten te koelen. Het principe is echter hetzelfde.

Systemen

Bij de warmtepomp zijn er verschillende systemen; de keuze van het systeem hangt af van de situatie; er is ook een groot verschil in rendement tussen de verschillende warmtepompen. Enkele systemen zijn:

Lucht/lucht-warmtepomp

Bij lucht/lucht-warmtepompen wordt de warmte, net als bij een lucht/water-warmtepomp, gehaald uit de buitenlucht, waardoor het rendement afhankelijk is van de buitentemperatuur. In feite is een lucht/lucht-warmtepomp een airconditioning waar door middel van het omschakelen van een klepje de verdamper en de condensor omgeschakeld kunnen worden. Veel airco's worden dan ook verkocht met specificaties voor verwarming. De investeringskostprijs van dit type ligt relatief laag in vergelijking met andere soorten warmtepompen vooral als er sowieso een airco geplaatst moet worden. Daarbij komt dat de benodigde "opvoer" warmte vanwege het gebruik van een luchtblazer lager kan zijn dan bij het gebruik van (lage temperatuur)radiatoren zoals bij een lucht/water-warmtepomp. Dat komt het rendement (COP-waarde) ten goede. Nadeel is dat de overheid geen subsidie geeft voor lucht/lucht-warmtepompen. Ook heeft de bij dit systeem noodzakelijke luchtblazer bij zijn functie als airco bij temperaturen als 25 graden dan wel een aangenaam (afkoelend) effect. Maar mogelijk minder in zijn verwarmingsfunctie bij bijvoorbeeld slechts 18 graden. In de verwarmingsfunctie ontstaat er, i.t.t de airco functie, geen condenswater waardoor de kans op ziekteverwekkers zoals legionella een heel stuk kleiner is. De industrie is in de jaren 2010 wereldwijd fors aan het investeren in het betrouwbaar en efficiënter krijgen van een hele nieuwe generatie luchtwarmtepompen.

Er zijn twee systemen. Een single block waarbij koeler en verwarmer in één apparaat zitten en dus in een gat in de muur geïnstalleerd moeten worden of een split block waarbij het luchtblazer gedeelte in de te verwarmen/koelen ruimte geplaatst moet worden en verdamper (in de verwarmingsfunctie) buiten. Deze moeten o.a. door (geïsoleerde) koperen buisjes tussen de verdamper en condensor met elkaar worden verbonden. De compressor zit in het binnen gedeelte waardoor er in de verwarmingsfunctie weinig warmteverliezen optreden.

Bij een lucht/lucht-warmtepomp wordt er géén lucht van buiten (met bijvoorbeeld de rook van de houtkachels van de buren) aangezogen. De warmte wordt namelijk getransporteerd door koperen buisjes tussen de verdamper (buiten) en condensor (binnen) (in de verwarmingsmodus). Er wordt alleen lucht van buiten aangezogen met een ventilatiewarmtepomp (meestal een lucht/water-warmtepomp).

Lucht/water-warmtepomp

Bij lucht/water-warmtepompen wordt de energie uit de lucht gehaald en opgepompt tot een hogere temperatuur. Hierbij wordt de warmte afgegeven aan water. Dit is een ideaal systeem voor de verwarming van een woning. Het water dient meestal slechts tot 38 °C opgewarmd te worden, waardoor een hogere COP-waarde bereikt kan worden door de lage condensortemperatuur. Ook bij dit type is het rendement minder gunstig zodra het buiten vriest, maar nog steeds voldoende om de woning warm te krijgen. Daarnaast is het ook nog mogelijk om met sommige lucht/water-warmtepompen te koelen. Dit verhoogt het comfort in de woning.

Water/water-warmtepomp

Bij water/water-warmtepompen wordt de zogenaamde 'gratis' warmte uit water gehaald, via een warmtepomppaneel op het dak of het wordt met behulp van water uit de bodem gehaald. Voor al deze types geldt: Hoe groter men de warmtewisselaar dimensioneert, hoe beter het rendement van de installatie. Er zijn verschillende mogelijkheden.

Voorstelling van een verticale collector. 1 is de aansluiting, 2 de grond, 3 de omgevingswarmte, 4 het koude deel van de collector, 5 het warme deel van de collector

PVT warmtepomppaneel op het dak

Het PVT warmtepomppaneel combineert een zonnepaneel (PV) met een warmtewisselaar (T). Een goed gedimensioneerd warmtepomppaneel levert voldoende bronenergie op voor een all-electric warmtepomp-verwarmingssysteem.

Oppompen van water uit een rivier of meer (aquathermie)

Indien de te verwarmen ruimte naast een waterloop of meer ligt kan daaruit water opgepompt worden, door het warmtepompsysteem gevoerd worden en dan terug geloosd worden. Hierbij moet wel gezorgd worden voor een goed filter. Voor woonboten is het vaak mogelijk om een paar honderd meter PE-slang onder de ark te hangen, waardoor geen filters nodig zijn (gesloten systeem). Het rendement ligt relatief hoog aangezien een rivier of meer meestal niet helemaal dichtvriest en de temperatuur normaal dus niet onder de 4 °C komt te liggen. Ook is er weinig elektra nodig voor het rondpompen van het water en zal er geen uitputting van het medium ontstaan doordat het continu vervangen wordt.

Verticale grondwarmtewisselaar (gesloten systeem)

In dit geval wordt een put geboord. De diepte hangt af van de grootte van de te verwarmen oppervlakte. In die put laat men water door U-vormige pijpen vloeien. Het water neemt de warmte van de diepe grondlagen op en wordt weer naar boven gepompt. In het warmtepompsysteem wordt de temperatuur dan weer verhoogd tot een bruikbare temperatuur. De dimensionering van deze warmtewisselaar, en de grondsoort waarin hij geplaatst wordt, bepaalt in hoge mate het rendement van de installatie. Overdimensionering verdient zichzelf op de lange duur altijd terug. Ondergedimensioneerde bodemlussen zijn de meest voorkomende oorzaak van het slecht of niet functioneren van warmtepompen.

Feitelijk dumpt de warmtepomp de koude uit het huis via de bodemlussen in de ondergrond. Daardoor koelt die grond af. Is dit naar het einde van het stookseizoen toe meer dan enkele graden, dan raakt de grond 'uitgeput'. Hierdoor zal het rendement achteruit hollen. Als de grond om de lussen heen bestaat uit grof zand en grind met beweeglijk grondwater, dan zal de bron in de zomer vanzelf bijtrekken. Echter, als er meerdere warmtewisselaars dicht bij elkaar geplaatst worden, of als de ondergrond relatief goed isoleert en het grondwater weinig beweeglijk is, dan zal de grond elk jaar een beetje kouder worden, waardoor het rendement jaar in jaar uit verder daalt. Het kan dan nodig zijn om in de zomer buitenwarmte of zonnewarmte te oogsten en daarmee de grond rond de warmtewisselaar te 'regenereren' (verwarmen). Of er moet dieper geboord worden, tot men met de nieuwe lussen in een grovere bodem zit.

Om te voorkomen dat de grond uitput zal men dat goed moeten dimensioneren. Om de juiste lengte te bepalen moet men ISSO 73 gebruiken; hierin staan de voorwaarden voor de berekening.

Deze ISSO norm heeft een belangrijke tabel[dode link] waar aan de hand van de draaiuren een waarde kan worden afgelezen wat men aan de grond kan onttrekken. Daar komen nog correcties bij van de specifieke grondsoorten en het percentage regeneratie. Bij geen draaiuurinformatie moet men 2000 uur aanhouden en 500 uur voor warmtapwaterbereiding, in totaal dus 2500 uur. In de praktijk komt dit uit tussen de 20W/m en 25W/m bijna nooit hoger. Bedenk wel dat een goedwerkend grondsysteem merendeels het rendement van de warmtepomp bepaalt.

Warmte putten uit grondwater (open systeem)

Boren grondwaterput

Hierbij boort men meestal twee putten. Uit de ene pompt men grondwater op waaruit de warmte wordt gehaald. In de andere wordt het koude water geloosd. Het lozen van het koude water op het riool of oppervlaktewater is niet toegestaan. Dit systeem heeft vaak een groter rendement dan het vorige maar de kostprijs van de installatie ligt natuurlijk veel hoger doordat ook een tweede put geboord moet worden. Het rendement hangt ook sterk af van het type grond waar de installatie geplaatst wordt.

Dit systeem heeft grote voordelen wanneer de woning of het gebouw ook gekoeld moet worden. In de winter pompt men namelijk warm grondwater op; doordat hier warmte uit onttrokken wordt, koelt het af. Dit afgekoelde grondwater wordt weer opgeslagen in de andere put, zodat het in de zomer daaruit gehaald kan worden om het gebouw te koelen. Hierdoor warmt het grondwater weer op, deze warmte kan weer in de eerste put opgeslagen worden en in de winter worden gebruikt. In Nederland is ook voor dit type een vergunning nodig, wanneer er maximaal meer dan 10 m3/h opgepompt kan worden. Moderne, goed geïsoleerde kantoorpanden hebben vaak meer last van zonnehitte dan van koude. Hierdoor lozen ze in de zomer vaak veel meer warmte in de put, dan dat ze in de winter nodig hebben voor verwarming. Hierdoor ontstaat vaak een onbalans die slecht is voor het rendement en de stookkosten. De Nederlandse overheid gaat verplicht stellen dat zulke installaties weer in balans gebracht worden. Oplossing: In de winter gratis koude uit de buitenlucht oogsten en deze in de koude-put opslaan.

Meestal moeten zulke warmtebronnen regelmatig (twee keer per jaar) gespoeld worden met een zeer krachtige pomp.

Een klein deel van deze systemen functioneert slecht, meestal omdat de bron veel minder water levert dan gehoopt. Dan vergt het systeem heel veel pompenergie en de put slaat minder warmte op dan gepland. Soms kan vakkundig uitspoelen helpen. Soms moet er opnieuw geboord worden. Bij kleine projecten (minder dan tien huizen) verzieken de relatief hoge stroomrekeningen van de grondwaterpomp soms ook het rendement.

Horizontale grondwarmtewisselaar (gesloten systeem)

horizontale collector

Hierbij wordt er een groot buizennetwerk onder de tuin aangelegd. Er is een groot oppervlak nodig: ongeveer drie maal de grootte van het te verwarmen oppervlak. De COP is ook sterk seizoensafhankelijk omdat de leidingen meestal maar 70 cm tot 1.5 m onder de grond liggen. Als de winter lang en koud is, dan hebben zulke systemen vaak een heel slecht rendement. Als de tuin al aangelegd is, dan is er nog altijd de mogelijkheid om horizontale boringen uit te voeren. Dat zal natuurlijk de kostprijs verhogen. Een andere factor waar rekening mee moet worden gehouden is dat er geen diepwortelende planten boven de collector geplaatst mogen worden.

Benodigde grondoppervlakte

Afhankelijk van het vermogen van de warmtepomp en de soort grond kan men een schatting maken van welke oppervlakte de collector zou moeten hebben. De uit de diepere lagen opstromende warmte is als warmtebron verwaarloosbaar voor de bovenste lagen. De benutbare warmtehoeveelheid en dus de grootte van het vereiste oppervlak hangen sterk af van de thermosfysische eigenschappen van de grond en van de stralingsenergie.

De thermische eigenschappen, zoals volumetrische warmtecapaciteit en warmtegeleidend vermogen, zijn sterk afhankelijk van de samenstelling en de toestand van de grond. Eenvoudig gezegd zijn de opslageigenschappen en het warmtegeleidende vermogen groter naarmate de bodem meer water bevat, het aantal minerale bestanddelen groter is en de poriën kleiner zijn. Water heeft een relatief grote warmtecapaciteit, hierdoor is bij plaatsing van een warmtepomp met een collector minder oppervlakte vereist in natte bodems.

Een manier om een nattere bodem te verkrijgen is dieper graven. Dit zal de plaatsingskosten natuurlijk verhogen. Verder moet men rekening houden met uitputting van de bodem. Na een hele winter stoken zal de grond afkoelen, hierdoor kan men minder warmte onttrekken.

De onttrekkingsvermogens (qe) van de bodem liggen tussen de 10 en 35 W/m². Hier zijn enkele onttrekkingsvermogens voor de verschillende bodems.

bodem onttrekkingsvermogen
droge zanderige bodem 10-15 W/m²
vochtige zanderige bodem 15-20 W/m²
Droge leemachtige bodem 20-25 W/m²
Vochtige leemachtige bodem 25-30 W/m²
Bodem met grondwater 30-35 W/m²

Voorbeeld

Veronderstel een situatie van een woning met als grondsoort vochtige leemachtige bodem; we gebruiken dus een onttrekkingsvermogen van 25 W/m². We nemen geen 30 W/m² omdat naarmate het stookseizoen vordert er minder energie in de bodem aanwezig zal zijn door uitputting van de grond.

Samen met de warmtebehoefte van het huis wordt hiermee de vereiste grondoppervlakte bepaald. Het vereiste grondoppervlak wordt berekend op basis van het koelvermogen (Qk) van de warmtepomp. Het koelvermogen is het verschil tussen het verwarmingsvermogen van de warmtepomp en het opgenomen vermogen uit het net (Pwp).

We beschouwen een warmtepomp met een verwarmingsvermogen (Qwp) van 10,8 kW. Deze warmtepomp heeft als eigenschap dat ze daarvan 2,4 kW uit het net haalt. Dit is met andere woorden een warmtepomp met een COP van 4,5.

Qk=Qwp-Pwp=10,8-2,4=8,4 kW

Het koelvermogen is dus 8,4 kW

Benodigde grondoppervlakte wordt berekend door het koelvermogen van de warmtepomp te delen door het onttrekkingsvermogen van de bodem.

Hier wordt dit 84 00/25=336 m²

We besluiten dat er in dit voorbeeld een collector nodig is die 336 m² groot is.

Bepalen nodige circuits van de collector

Nu weten we reeds de nodige oppervlakte, maar het is ook belangrijk om de lengte van de nodige circuits in dat oppervlak te bepalen. De leidingen worden geplaatst in buiscircuits van maximum 100 m lengte. Deze lengte wordt genomen omdat er anders een te groot drukverlies door de leidingen ontstaat. Het aantal circuits hangt voornamelijk af van de soort gebruikte leiding.

Voorbeeld

Stel dat we leidingen van het type PE 25 x 2,3 gebruiken. Dit zijn leidingen met een diameter van 25 mm en een wanddikte van 2.3 mm. In tabellen kan men vinden dat deze leidingen de eigenschap hebben dat men 2x de lengte leidingen nodig heeft van de benodigde oppervlakte grond. Deze waarden worden experimenteel vastgesteld.

We gebruiken het nodige grondoppervlak van in vorig voorbeeld, namelijk 336 m².

336*2=672m

We merken dat we ongeveer 672 m leidingen nodig hebben.

Het aantal circuits vinden we nu makkelijk door het aantal meter te delen door 100 (de lengte van elk circuit). We zullen dus 6,72 circuits nodig hebben. We zullen in realiteit dus 7 circuits gebruiken.

Vergunning

Nederland

Met de invoering van het Wijzigingsbesluit bodemenergiesystemen op 1 juli 2013 is in Nederland voor zowel een open als een gesloten systeem een vergunning en een melding bij de overheid verplicht vanwege ervaringen in Staufen im Breisgau waarbij de binnenstad 12 cm omhoog kwam[3] door het aanboren van een overdruk aquifer.

Obm-vergunning

Voor gesloten systemen met een vermogen groter dan 70 kW kan ook een omgevingsvergunning beperkte milieutoets (obm-vergunning) verplicht worden.[4]. Het systeem wordt dan ingevoerd in het Landelijke Grondwaterregister (LGR) en is na 24 uur zichtbaar op WKOtool.[5] Als warmtepompsystemen in een omgeving te dicht bij elkaar staan kan dit een negatief effect hebben op het rendement van de installaties.

Waterwet

Voor open bronsystemen is een vergunning nodig van de provincie in het kader van de Waterwet. Tot 22-12-2009 was deze vergunning nodig op basis van de Grondwaterwet, deze is met de ingang van de Waterwet komen te vervallen.

Werkingswijzen

Monovalente werking
Bij dit systeem wordt het hele huis uitsluitend verwarmd door de warmtepomp. Er zijn geen bijverwarmingen. Hierbij is het dan ook zeer belangrijk dat de warmtepomp goed gedimensioneerd is. Men moet ervoor zorgen dat er altijd genoeg warmte beschikbaar is, maar een overgedimensioneerde warmtepomp komt vlug duur uit. Hierbij moet ook rekening gehouden worden met de constante behoefte aan warm tapwater. Vooral het type water/water is geschikt voor deze werkingswijze.
Mono-energetische werking
De warmtepomp zorgt voor het grootste deel van de warmtebehoefte, maar bij erg koud weer wordt ze ondersteund door een elektrisch aangedreven warmtegenerator zoals een weerstand. Bij de meeste installaties wordt 70 à 80 % van het benodigde warmtevermogen geschat. Het aandeel van de jaarlijkse stookactiviteit van de warmtepomp bedraagt rond de 92 à 98 %. Hierbij is een minder hoge investering in de warmtepomp nodig, ten opzichte van een warmtepomp met monovalente werking.
Bivalent-parallelle werking
De warmtepompinstallatie wordt tijdens de verwarmingswerking aangevuld met een bijkomende warmtegenerator. (mazout- /gasketel). Het verwarmingsvermogen van de warmtepomp wordt dan gerekend op 50 à 70 % van de warmtebehoefte van het huis. Het aandeel van de warmtepomp in de jaarlijkse stookactiviteit ligt tussen de 72 en 90 %. Dit komt vooral goedkoop uit bij renovatiewerken met een reeds bestaande verwarming.
Bivalent-alternatieve werking
De warmtepomp zal tot aan een bepaalde minimum buitentemperatuur voor de volledige verwarming van het huis zorgen. Als de buitentemperatuur te laag is wordt de warmtepomp volledig uitgeschakeld en wordt het huis verwarmd door een andere verwarmingsinstallatie. Dit komt vooral veel voor bij lucht/water warmtepompen omdat deze een laag rendement hebben bij lage buitentemperaturen.

Voor- en nadelen

Voordelen

  • Geen olie- of gaskosten
  • Lagere CO2-uitstoot (Als tenminste de benodigde elektriciteit niet vooral uit kolen wordt opgewekt.)
  • Geen schoorsteen nodig
  • Geen opslag van stookolie nodig
  • Kan ook dienen als koeling bij te hoge binnentemperaturen
  • Kan bij industriële processen toegepast worden om restwarmte te hergebruiken
  • Regeneratie van de bodem in de zomer bij bodem/water warmtepompen (passieve koeling)
  • Lage onderhoudskosten
  • Premies
  • Verhoogt het zelfverbruik
  • Verlaging van het EPBD van de woning

Nadelen

  • Geluidsoverlast door de buitenunit (compressor)
  • Grote investering[6]
  • Grotere dimensie van radiatoren of vloerverwarming vereist
  • Opwarming gebeurt op lagere temperaturen en verloopt dus trager, of er moeten radiatoren met ingebouwde fan gebruikt worden
  • Bij het type met de horizontale collector is een grote oppervlakte vereist, bij andere systemen is een specifieke ligging nodig
  • Vergunningen zijn vereist
  • Uitbreiding van een woning vereist extra capaciteit van de warmtepomp die het niet kan leveren omdat deze precies is berekend op de huidige warmtevraag.[7]
  • Systemen met een elektrisch back-upsysteem voor als de warmtebron (grond, water of lucht) onvoldoende warmte levert of er een storing in het warmtepompsysteem is, zorgen door het lage rendement voor hoge elektriciteitskosten.[7]

Rendement

De warmtepomp komt met een COP van 4,2 tot 4,6 op de tweede plaats na de warmte-krachtkoppeling (of microwarmte-krachtkoppeling) die een COP van 9 heeft.[2]

Een typische eigenschap van warmtepompen is dat met een bepaalde hoeveelheid energie, in de vorm van arbeid, een grotere hoeveelheid warmte-energie kan worden verplaatst dan er aan arbeid is verricht. Hierdoor kunnen ze een COP (Coefficient Of Performance, ofwel prestatiecoëfficiënt) hebben die hoger is dan 100%. Dit begrip werd in het leven geroepen om de verschillende warmtepompen te kunnen vergelijken. Men mag het in geen geval vergelijken met een thermodynamisch rendement, dat betrekking heeft op de omzetting van warmte-energie in arbeid, niet op de verplaatsing ervan. Later in dit artikel wordt op dit begrip nader ingegaan.

De arbeid van de compressor is nodig voor het verpompen van het koudemiddel tegen het drukverschil tussen condensor en verdamper in. Naarmate dit drukverschil groter is moet de compressor meer arbeid leveren voor dezelfde hoeveelheid verplaatst koudemiddel (en hiermee verplaatste warmte). Het drukverschil hangt samen met het temperatuurverschil tussen condensor en verdamper. Voor een zo hoog mogelijke opbrengst moet dit temperatuurverschil dus zo klein mogelijk zijn. Een deel van het temperatuurverschil zit tussen die van de verdamper en de omgeving, respectievelijk de condensor en de te verwarmen ruimte. Om deze verschillen zo klein mogelijk te maken hebben de condensor en verdamper een groot oppervlak en waar mogelijk een ventilator.

In het T,s-diagram hiernaast zijn de twee deelprocessen weergegeven die de thermodynamische verliezen veroorzaken, namelijk de expansie in het smoorventiel en de afkoeling van het hete gas in de condensor. In het eerste geval wordt mechanische energie direct omgezet in warmte, in het tweede geval worden twee reservoirs van verschillende temperatuur gemengd. Thermodynamisch beter (maar technisch moeilijk) zou zijn de drukverlaging te laten plaatsvinden in een turbine of een cilinder met zuiger, de verplaatsing van de zuiger benuttend als arbeid, respectievelijk de compressor te voeden met een mengsel van vloeistof en damp zodanig dat aan het eind van de compressieslag alle vloeistof net is verdampt.

Coefficient of performance

De coefficient of performance COP geeft de verhouding weer tussen de hoeveelheid afgegeven warmte tegenover de hoeveelheid verbruikte energie van onder andere een warmtepomp. Deze energie wordt bij de warmtepomp gebruikt door de compressor.

Het theoretisch maximum van de COP kan simpel worden berekend:

Hierbij is Q de bruikbare hoeveelheid warmte geleverd door de condensor van de warmtepomp en W de hoeveelheid energie die verbruikt is door de compressor.

Volgens de eerste wet van de thermodynamica geldt dat: en , waar de warmte is die door het warmtereservoir is afgegeven. En de warmte opgeslagen in het koudereservoir.

Als men nu W vervangt vindt men:
Het kan aangetoond worden dat en , waar en de temperaturen van het warme en het koude reservoir zijn.

Hieruit volgt:

(Alle temperaturen in Kelvin)

net zoals,

Er kan ook aangetoond worden dat

Het komt erop neer dat voor een hoge COP, en dus voor lage stookkosten, de temperatuur van de vloeistof die uit de bodem wordt opgepompt zo hoog mogelijk moet zijn en dat de temperatuur van het water waarmee het huis verwarmd wordt zo laag mogelijk moet zijn. Dit vraagt om grote of veel warmtewisselaars in de bodem, en veel slangen in de vloerverwarming.

Warmtepompen worden standaard getest met een T-koud van 0, en een T-warm van 35 graden Celsius. De theoretisch maximale COP is volgens bovenstaande formule dan 7,8. De door TNO gemeten COP is echter bij bijna alle merken tussen 4,2 en 4,6. Dat laat zien dat er nog veel ruimte voor verbetering van het rendement is.

Voorbeeld

Een water/water warmtepomp heeft een COP van 3,5. Dit wil zeggen dat de warmtepomp theoretisch in staat is om 3,5 kWh aan warmte te produceren voor elke kWh die ze uit het elektriciteitsnet haalt. Dit kan men gelijkstellen aan een rendement van 350%. Bij gewone elektrische verwarming heb je slechts een rendement van 100%. Weer willen we duidelijk maken dat dit rendement bekeken is vanuit een economisch standpunt. De warmte die uit de omgeving opgenomen wordt is immers gratis. Volledig thermodynamisch gezien zou het dan ook verkeerd zijn om te zeggen dat we een rendement van meer dan 100 % behalen.

De verhouding tussen de gas- en elektriciteitsprijs bepaalt vervolgens wat de bedrijfskosten zijn.

Bijvoorbeeld: de productie van 1 GJ warmte met een hoogrendementsketel ten opzichte van een waterwarmtepomp:

  • De hoogrendementsketel heeft een gemiddeld rendement van 90% op bovenwaarde
  • De water/water warmtepomp heeft een SPF van 3
  • De energetische waarde van 1 kWh elektriciteit is 1 kJ/s * 3600s = 3600 kJ = 3,6 MJ
  • De energetische waarde (bovenwaarde) van 1 Gronings aardgas bedraagt 35,2 MJ
  • De kosten voor 1 kWh elektriciteit bedragen € 0,20
  • De kosten voor 1 aardgas bedragen € 0,60

Voor de productie van 1 GJ ofwel 1000 MJ warmte heeft de hoogrendementsketel 1000/0,90 = 1100 MJ aan aardgas nodig, ofwel 1100/35,2 = 31,5 aardgas. De kosten hiervoor bedragen 31,5 * € 0,60 = € 19,00. Voor de productie van 1 GJ ofwel 1000 MJ warmte heeft de warmtepomp 1000/3 = 333 MJ aan elektra nodig, ofwel 333/3,6 = 92,5 kWh. De kosten hiervoor bedragen 92,5 * € 0,20 = € 18,50.

Bij een gasgestookte elektriciteitscentrale met een rendement van 40% is uiteindelijk slechts 333 / 0,40 = 833 MJ ofwel 23,7 aardgas nodig, tegenover 31,5 bij de hoogrendementsketel.

Het voordeel van de warmtepomp zit dus niet zozeer in de grote besparing op stookkosten als wel in de vermeden uitstoot CO2 en het extra comfort in de vorm van de geboden passieve koeling (koelen van een gebouw met natuurlijke koude uit de bodem). Overigens valt dit CO2-voordeel weg als de elektriciteit voornamelijk uit kolengestookte centrales komt.

De energiebesparing bij woningen kan worden verhoogd door 's zomers gratis warmte de grond in te pompen voor gebruik in de winter. Een grote lucht/water-warmtewisselaar kan, bij voldoende afmeting eventueel zonder ventilator, op het dak in de wind gezet worden. Zodra de luchttemperatuur hoger is dan de grondwatertemperatuur, kan dit ding al bijdragen aan rendementsverhoging. Ook kan de vloerverwarming op hete dagen zonnewarmte uit de vloeren naar beneden pompen, en daarmee het huis ook nog gratis koelen. Zo wordt het grondwater voorverwarmd, waardoor het rendement van de warmtepomp in de winter flink stijgt. Met deze combinatie van bodem- en zomerluchtwarmte kan de CO2-uitstoot, en dus de broeikas-bijdrage door gebouwverwarmingen spectaculair dalen.

SPF

Het rendement (COP) aangegeven bij de aankoop van een lucht/water warmtepomp is het theoretische rendement. Dit ligt meestal een stuk hoger dan het reële rendement. Wel is het duidelijk dat er grote verschillen zijn. Als men toch het reële rendement wil weten, gaat men ervan uit dat de COP met 0,4 à 0,7 verminderd moet worden; dit hangt natuurlijk af van het type warmtepomp. Zo wordt bij een bodem/water warmtepomp het rendement opgegeven bij B0/W35 maar bij een goed gedimensioneerde bron zal de temperatuur nooit zakken onder de 0°C en ligt deze bij het begin van het stookseizoen zelfs op 10 a 12°C. Buiten een goede warmtepomp is het belangrijk dat de gevraagde vertrektemperatuur zo laag mogelijk is. Hierdoor worden warmtepompen vaak gecombineerd met vloerverwarming. Het rendement op een stookseizoen bekeken noemt men de SPF (Seasonal Performance Factor).

Aantallen Nederland

Sinds 2016 verstrekt de overheid de ISDE (InvesteringsSubsidie Duurzame Energie), om het verbruik van gas terug te dringen en Nederland te verduurzamen. De subsidie loopt tot en met 31 december 2020. Het aantal warmtepompen in Nederland groeit sinds 2015 in een rap tempo.[8][9][10]

Aantallen
JaarWoningenTotaal gebouwen
2015143.425295.459
2016179.887367.843
2017224.400448.769
2018283.840552.617

Referenties

  1. http://industrialheatpumps.nl/en/how_it_works/cop_heat_pump
  2. (2011) . Combined heat and power considered as a virtual steam cycle heat pump. Energy Policy 39 (9): 5528–5534 . ISSN:03014215. DOI: 10.1016/j.enpol.2011.05.007.
  3. (en) Green good intentions cause chaos in two German towns
  4. Wet- en Regelgeving bodemenergie
  5. WKOtool
  6. De warmtepomp uitgelegd. haxo.nl. Geraadpleegd op 2020-04-06.
  7. Aandachtspunten warmtepomp
  8. Martin Horstink, Aantal warmtepompen bij Nederlandse woningen groeit sterk. Warmtepompplein.nl (10 juli 2018). Geraadpleegd op 22 december 2018.
  9. Subsidies warmtepompen. Warmtepompplein.nl. Geraadpleegd op 22 december 2018.
  10. Warmtepompen; aantallen, thermisch vermogen en energiestromen. CBS (20 december 2018). Geraadpleegd op 22 december 2018.
Zie de categorie Heat pumps van Wikimedia Commons voor mediabestanden over dit onderwerp.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.