Microprocessor chronology

Progress of miniaturisation, and comparison of sizes of semiconductor manufacturing process nodes with some microscopic objects and visible light wavelengths.

1970s

The first microprocessors were manufactured in the 1970s. Designers predominantly used MOSFET transistors with pMOS logic in the early 1970s, and then predominantly used NMOS logic from the mid-1970s. They also experimented with various word lengths. Early on, 4-bit processors were common (e.g. Intel 4004). Later in the decade, 8-bit processors such as the MOS 6502 superseded the 4-bit chips. 16-bit processors emerged by the decade's end. Some unusual word lengths were tried, including 12-bit and 20-bit. Intel's 4004 is widely regarded as the first-ever microprocessor.

Date Name Developer Max clock
(first version)
Word size
(bits)
Process Chips[1] Transistors MOSFET Ref
1971 4004 Intel 740 kHz 4 10 μm 1 2,250 pMOS [1]
1972 PPS-25 Fairchild 400 kHz 4   2 pMOS [2][lower-alpha 1]
1972 μPD700 NEC   4   1 [3]
1972 8008 Intel 500 kHz 8 10 μm 1 3,500 pMOS
1972 PPS-4 Rockwell 200 kHz 4   1 pMOS [4][5]
1973 μCOM-4 NEC 2 MHz 4 7.5 μm 1 2,500 NMOS [6][7][3][1]
1973 TLCS-12 Toshiba 1 MHz 12 6 μm 1 2,800 silicon gates pMOS [8][9][1]
1973 Mini-D Burroughs 1 MHz 8   1 pMOS [10]
1974 IMP-8 National 715 kHz 8   3 pMOS [8]
1974 8080 Intel 2 MHz 8 6 μm 1 6,000 NMOS
1974 μCOM-8 NEC 2 MHz 8   1 NMOS [3][1]
1974 5065 Mostek 1.4 MHz 8   1 pMOS [11]
1974 μCOM-16 NEC 2 MHz 16   2 NMOS [3][1]
1974 IMP-4 National 500 kHz 4   3 pMOS [8]
1974 4040 Intel 740 kHz 4 10 μm 1 3,000 pMOS
1974 6800 Motorola 1 MHz 8 - 1 4,100 NMOS [8]
1974 TMS 1000 Texas Instruments 400 kHz 4 8 μm 1 8,000
1974 PACE National   16   1 pMOS [12][13]
1974 ISP-8A/500 (SC/MP) National 1 MHz 8   1 pMOS
1975 6100 Intersil 4 MHz 12 - 1 4,000 CMOS [14][15]
1975 TLCS-12A Toshiba 1.2 MHz 12 - 1 pMOS [1]
1975 2650 Signetics 1.2 MHz 8   1 NMOS [8]
1975 PPS-8 Rockwell 256 kHz 8   1 pMOS [8]
1975 F-8 Fairchild 2 MHz 8   1 NMOS [8]
1975 CDP 1801 RCA 2 MHz 8 5 μm 2 5,000 CMOS [16][17]
1975 6502 MOS Technology 1 MHz 8 - 1 3,510 NMOS (dynamic)
1975 IMP-16 National 715 kHz 16   5 pMOS [18][1][19]
1975 PFL-16A (MN 1610) Panafacom 2 MHz 16 - 1 NMOS [1]
1975 BPC Hewlett Packard 10 MHz 16 - 1 6,000 (+ ROM) NMOS [20][21]
1975 MCP-1600 Western Digital 3.3 MHz 16 - 3 NMOS
1975 CP1600 General Instrument 3.3 MHz 16   1 NMOS [12][22][23][1]
1976 CDP 1802 RCA 6.4 MHz 8   1 CMOS [24][25]
1976 Z-80 Zilog 2.5 MHz 8 4 μm 1 8,500 NMOS
1976 TMS9900 Texas Instruments 3.3 MHz 16 - 1 8,000
1976 8x300 Signetics 8 MHz 8   1 Bipolar [26][27]
1977 Bellmac-8 (WE212) Bell Labs 2.0 MHz 8 5 μm 1 7,000 CMOS
1977 8085 Intel 3.0 MHz 8 3 μm 1 6,500
1977 MC14500B Motorola 1.0 MHz 1 1 CMOS
1978 6809 Motorola 1 MHz 8 5 μm 1 40,000
1978 8086 Intel 5 MHz 16 3 μm 1 29,000
1978 6801 Motorola - 8 5 μm 1 35,000
1979 Z8000 Zilog - 16 - 1 17,500
1979 8088 Intel 5 MHz 8/16[lower-alpha 2] 3 μm 1 29,000 NMOS (HMOS)
1979 68000 Motorola 8 MHz 16/32[lower-alpha 3] 3.5 μm 1 68,000 NMOS (HMOS) [28]

1980s

In the 1980s, 16-bit and 32-bit microprocessors were common among new designs, and CMOS technology overtook NMOS. Transistor count increased dramatically during the decade.

The home computers of the 1980s predominantly used processors that were introduced in the 1970s. Versions of the MOS 6502, first released in 1975, and the Zilog Z80 (1976), were at the core of many of the home computers, such as the Commodore 64 and the ZX Spectrum. Even the first-generation IBM PC used a processor from the 1970s, the Intel 8088.

It was not until Intel's 80286 (used in the IBM PC/AT), and later the 80386, that processors designed in the 1980s drove the computers of the 1980s. These processors offered higher clock speeds and 32-bit word length as well as new operating modes, such as protected mode, that were not available in earlier chips. Critically, protected mode allowed the use of virtual memory and brought the graphical user interface to business computers, beginning with Windows 2.0.

Date Name Developer Clock Word size
(bits)
Process Transistors
1980 16032 National Semiconductor - 16/32 - 60,000
1981 6120 Harris Corporation 10 MHz 12 - 20,000 (CMOS)[29]
1981 ROMP IBM 10 MHz 32 2 μm 45,000
1981 T-11 DEC 2.5 MHz 16 5 μm 17,000 (NMOS)
1982 RISC-I[30] UC Berkeley 1 MHz - 5 μm 44,420 (NMOS)
1982 FOCUS Hewlett Packard 18 MHz 32 1.5 μm 450,000
1982 80186 Intel 6 MHz 16 - 55,000
? 80C186 Intel 6 MHz 16 - ? (CMOS)
1982 80188 Intel 8 MHz 8/16 - 29,000
1982 80286 Intel 6 MHz 16 1.5 μm 134,000
1983 RISC-II UC Berkeley 3 MHz - 3 μm 40,760 (NMOS)
1983 MIPS[31] Stanford University 2 MHz 32 3 μm 25,000
1984 68020 Motorola 16 MHz 32 2 μm 190,000
1984 32032 National Semiconductor - 32 - 70,000
1984 V20 NEC 5 MHz 8/16 - 63,000
1985 80386 Intel 16–40 MHz 32 1.5 μm 275,000
1985 MicroVax II 78032 DEC 5 MHz 32 3.0 μm 125,000
1985 R2000 MIPS 8 MHz 32 2 μm 115,000
1985[32] Novix NC4016 Harris Corporation 8 MHz 16 3 μm[33] 16,000[34]
1986 Z80000 Zilog - 32 - 91,000
1986 SPARC MB86900 Fujitsu[35][36][37] 40 MHz 32 0.8 μm 800,000
1986 V60[38] NEC 16 MHz 16/32 1.5 μm 375,000
1987 CVAX 78034 DEC 12.5 MHz 32 2.0 μm 134,000
1987 ARM2 Acorn 8 MHz 32 2 μm 25,000[39]
1987 Gmicro/200[40] Hitachi - - 1 μm 730,000
1987 68030 Motorola 16 MHz 32 1.3 μm 273,000
1987 V70[38] NEC 20 MHz 16/32 1.5 μm 385,000
1988 R3000 MIPS 12 MHz 32 1.2 μm 120,000
1988 80386SX Intel 12–33 MHz 16/32 - -
1988 i960 Intel 10 MHz 33/32 1.5 μm 250,000
1989 i960CA[41] Intel 1633 MHz 33/32 0.8 μm 600,000
1989 VAX DC520 "Rigel" DEC 35 MHz 32 1.5 μm 320,000
1989 80486 Intel 25 MHz 32 1 μm 1,180,000
1989 i860 Intel 25 MHz 32 1 μm 1,000,000

1990s

The 32-bit microprocessor dominated the consumer market in the 1990s. Processor clock speeds increased by more than tenfold between 1990 and 1999, and 64-bit processors began to emerge later in the decade. In the 1990s, microprocessors no longer used the same clock speed for the processor and the RAM. Processors began to have a front-side bus (FSB) clock speed used in communication with RAM and other components. Typically, the processor itself ran at a clock speed that was a multiple of the FSB clock speed. Intel's Pentium III, for example, had an internal clock speed of 450–600 MHz and a FSB speed of 100–133 MHz. Only the processor's internal clock speed is shown here.

Date Name Developer Clock Word size
(bits)
Process Transistors
(millions)
Threads
1990 68040 Motorola 40 MHz 32 - 1.2
1990 POWER1 IBM 20–30 MHz 32 1,000 nm 6.9
1991 R4000 MIPS Computer Systems 100 MHz 64 800 nm 1.35
1991 NVAX DEC 62.5–90.91 MHz - 750 nm 1.3
1991 RSC IBM 33 MHz 32 800 nm 1.0[42]
1992 SH-1 Hitachi 20 MHz[43] 32 800 nm 0.6[44]
1992 Alpha 21064 DEC 100–200 MHz 64 750 nm 1.68
1992 microSPARC I Sun 40–50 MHz 32 800 nm 0.8
1992 PA-7100 Hewlett Packard 100 MHz 32 800 nm 0.85[45]
1992 486SLC Cyrix 40 MHz 16
1993 HARP-1 Hitachi 120 MHz - 500 nm 2.8[46]
1993 PowerPC 601 IBM, Motorola 50–80 MHz 32 600 nm 2.8
1993 Pentium Intel 60–66 MHz 32 800 nm 3.1
1993 POWER2 IBM 55–71.5 MHz 32 720 nm 23
1994 microSPARC II Fujitsu 60–125 MHz - 500 nm 2.3
1994 68060 Motorola 50 MHz 32 600 nm 2.5
1994 Alpha 21064A DEC 200–300 MHz 64 500 nm 2.85
1994 R4600 QED 100–125 MHz 64 650 nm 2.2
1994 PA-7200 Hewlett Packard 125 MHz 32 550 nm 1.26
1994 PowerPC 603 IBM, Motorola 60–120 MHz 32 500 nm 1.6
1994 PowerPC 604 IBM, Motorola 100–180 MHz 32 500 nm 3.6
1994 PA-7100LC Hewlett Packard 100 MHz 32 750 nm 0.90
1995 Alpha 21164 DEC 266–333 MHz 64 500 nm 9.3
1995 UltraSPARC Sun 143–167 MHz 64 470 nm 5.2
1995 SPARC64 HAL Computer Systems 101–118 MHz 64 400 nm -
1995 Pentium Pro Intel 150–200 MHz 32 350 nm 5.5
1996 Alpha 21164A DEC 400–500 MHz 64 350 nm 9.7
1996 K5 AMD 75–100 MHz 32 500 nm 4.3
1996 R10000 MTI 150–250 MHz 64 350 nm 6.7
1996 R5000 QED 180–250 MHz - 350 nm 3.7
1996 SPARC64 II HAL Computer Systems 141–161 MHz 64 350 nm -
1996 PA-8000 Hewlett-Packard 160–180 MHz 64 500 nm 3.8
1996 P2SC IBM 150 MHz 32 290 nm 15
1997 SH-4 Hitachi 200 MHz - 200 nm[47] 10[48]
1997 RS64 IBM 125 MHz 64 ? nm ?
1997 Pentium II Intel 233–300 MHz 32 350 nm 7.5
1997 PowerPC 620 IBM, Motorola 120–150 MHz 64 350 nm 6.9
1997 UltraSPARC IIs Sun 250–400 MHz 64 350 nm 5.4
1997 S/390 G4 IBM 370 MHz 32 500 nm 7.8
1997 PowerPC 750 IBM, Motorola 233–366 MHz 32 260 nm 6.35
1997 K6 AMD 166–233 MHz 32 350 nm 8.8
1998 RS64-II IBM 262 MHz 64 350 nm 12.5
1998 Alpha 21264 DEC 450–600 MHz 64 350 nm 15.2
1998 MIPS R12000 SGI 270–400 MHz 64 250–180 nm 6.9
1998 RM7000 QED 250–300 MHz - 250 nm 18
1998 SPARC64 III HAL Computer Systems 250–330 MHz 64 240 nm 17.6
1998 S/390 G5 IBM 500 MHz 32 250 nm 25
1998 PA-8500 Hewlett Packard 300–440 MHz 64 250 nm 140
1998 POWER3 IBM 200 MHz 64 250 nm 15
1999 Emotion Engine Sony, Toshiba 294–300 MHz - 180–65 nm[49] 13.5[50]
1999 Pentium III Intel 450–600 MHz 32 250 nm 9.5
1999 RS64-III IBM 450 MHz 64 220 nm 34 2
1999 PowerPC 7400 Motorola 350–500 MHz 32 200–130 nm 10.5
1999 Athlon AMD 500–1000 MHz 32 250 nm 22

2000s

64-bit processors became mainstream in the 2000s. Microprocessor clock speeds reached a ceiling because of the heat dissipation barrier. Instead of implementing expensive and impractical cooling systems, manufacturers turned to parallel computing in the form of the multi-core processor. Overclocking had its roots in the 1990s, but came into its own in the 2000s. Off-the-shelf cooling systems designed for overclocked processors became common, and the gaming PC had its advent as well. Over the decade, transistor counts increased by about an order of magnitude, a trend continued from previous decades. Process sizes decreased about fourfold, from 180 nm to 45 nm.

Date Name Developer Clock Process Transistors
(millions)
Cores per die /
Dies per module
2000 Athlon XP AMD 1.33–1.73 GHz 180 nm 37.5 1 / 1
2000 Duron AMD 550 MHz–1.3 GHz 180 nm 25 1 / 1
2000 RS64-IV IBM 600–750 MHz 180 nm 44 1 / 2
2000 Pentium 4 Intel 1.3–2 GHz 180–130 nm 42 1 / 1
2000 SPARC64 IV Fujitsu 450–810 MHz 130 nm - 1 / 1
2000 z900 IBM 918 MHz 180 nm 47 1 / 12, 20
2001 MIPS R14000 SGI 500–600 MHz 130 nm 7.2 1 / 1
2001 POWER4 IBM 1.1–1.4 GHz 180–130 nm 174 2 / 1, 4
2001 UltraSPARC III Sun 750–1200 MHz 130 nm 29 1 / 1
2001 Itanium Intel 733–800 MHz 180 nm 25 1 / 1
2001 PowerPC 7450 Motorola 733–800 MHz 180–130 nm 33 1 / 1
2002 SPARC64 V Fujitsu 1.1–1.35 GHz 130 nm 190 1 / 1
2002 Itanium 2 Intel 0.9–1 GHz 180 nm 410 1 / 1
2003 PowerPC 970 IBM 1.6–2.0 GHz 130–90 nm 52 1 / 1
2003 Pentium M Intel 0.9–1.7 GHz 130–90 nm 77 1 / 1
2003 Opteron AMD 1.4–2.4 GHz 130 nm 106 1 / 1
2004 POWER5 IBM 1.65–1.9 GHz 130–90 nm 276 2 / 1, 2, 4
2004 PowerPC BGL IBM 700 MHz 130 nm 95 2 / 1
2005 Opteron "Athens" AMD 1.6–3.0 GHz 90 nm 114 1 / 1
2005 Pentium D Intel 2.8–3.2 GHz 90 nm 115 1 / 2
2005 Athlon 64 X2 AMD 2–2.4 GHz 90 nm 243 2 / 1
2005 PowerPC 970MP IBM 1.2–2.5 GHz 90 nm 183 2 / 1
2005 UltraSPARC IV Sun 1.05–1.35 GHz 130 nm 66 2 / 1
2005 UltraSPARC T1 Sun 1–1.4 GHz 90 nm 300 8 / 1
2005 Xenon IBM 3.2 GHz 90–45 nm 165 3 / 1
2006 Core Duo Intel 1.1–2.33 GHz 90–65 nm 151 2 / 1
2006 Core 2 Intel 1.06–2.67 GHz 65–45 nm 291 2 / 1, 2
2006 Cell/B.E. IBM, Sony, Toshiba 3.2–4.6 GHz 90–45 nm 241 1+8 / 1
2006 Itanium "Montecito" Intel 1.4–1.6 GHz 90 nm 1720 2 / 1
2007 POWER6 IBM 3.5–4.7 GHz 65 nm 790 2 / 1
2007 SPARC64 VI Fujitsu 2.15–2.4 GHz 90 nm 543 2 / 1
2007 UltraSPARC T2 Sun 1–1.4 GHz 65 nm 503 8 / 1
2007 TILE64 Tilera 600–900 MHz 90–45 nm ? 64 / 1
2007 Opteron "Barcelona" AMD 1.8–3.2 GHz 65 nm 463 4 / 1
2007 PowerPC BGP IBM 850 MHz 90 nm 208 4 / 1
2008 Phenom AMD 1.8–2.6 GHz 65 nm 450 2, 3, 4 / 1
2008 z10 IBM 4.4 GHz 65 nm 993 4 / 7
2008 PowerXCell 8i IBM 2.8–4.0 GHz 65 nm 250 1+8 / 1
2008 SPARC64 VII Fujitsu 2.4–2.88 GHz 65 nm 600 4 / 1
2008 Atom Intel 0.8–1.6 GHz 65–45 nm 47 1 / 1
2008 Core i7 Intel 2.66–3.2 GHz 45–32 nm 730 2, 4, 6 / 1
2008 TILEPro64 Tilera 600–866 MHz 90–45 nm ? 64 / 1
2008 Opteron "Shanghai" AMD 2.3–2.9 GHz 45 nm 751 4 / 1
2009 Phenom II AMD 2.5–3.2 GHz 45 nm 758 2, 3, 4, 6 / 1
2009 Opteron "Istanbul" AMD 2.2–2.8 GHz 45 nm 904 6 / 1

2010s

Date Name Developer Clock Process Transistors
(millions)
Cores per die /
Dies per module
threads
per core
2010 POWER7 IBM 3–4.14 GHz 45 nm 1200 4, 6, 8 / 1, 4 4
2010 Itanium "Tukwila" Intel 2 GHz 65 nm 2000 2, 4 / 1 2
2010 Opteron "Magny-cours" AMD 1.7–2.4 GHz 45 nm 1810 4, 6 / 2 1
2010 Xeon "Nehalem-EX" Intel 1.73–2.66 GHz 45 nm 2300 4, 6, 8 / 1 2
2010 z196 IBM 3.8–5.2 GHz 45 nm 1400 4 / 1, 6 1
2010 SPARC T3 Sun 1.6 GHz 45 nm 2000 16 / 1 8
2010 SPARC64 VII+ Fujitsu 2.66–3.0 GHz 45 nm ? 4 / 1 2
2010 Intel "Westmere" Intel 1.86–3.33 GHz 32 nm 1170 4–6 / 1 2
2011 Intel "Sandy Bridge" Intel 1.6–3.4 GHz 32 nm 995[51] 2, 4 / 1 (1,) 2
2011 AMD Llano AMD 1.0–1.6 GHz 40 nm 380[52] 1, 2 / 1 1
2011 Xeon E7 Intel 1.73–2.67 GHz 32 nm 2600 4, 6, 8, 10 / 1 1–2
2011 Power ISA BGQ IBM 1.6 GHz 45 nm 1470 18 / 1 4
2011 SPARC64 VIIIfx Fujitsu 2.0 GHz 45 nm 760 8 / 1 2
2011 FX "Bulldozer" Interlagos AMD 3.1–3.6 GHz 32 nm 1200[53] 4–8 / 2 1
2011 SPARC T4 Oracle 2.8–3 GHz 40 nm 855 8 / 1 8
2012 SPARC64 IXfx Fujitsu 1.848 GHz 40 nm 1870 16 / 1 2
2012 zEC12 IBM 5.5 GHz 32 nm 2750 6 / 6 1
2012 POWER7+ IBM 3.1–5.3 GHz 32 nm 2100 8 / 1, 2 4
2012 Itanium "Poulson" Intel 1.73–2.53 GHz 32 nm 3100 8 / 1 2
2013 Intel "Haswell" Intel 1.9–4.4 GHz 22 nm 1400 4 / 1 2
2013 SPARC64 X Fujitsu 2.8–3 GHz 28 nm 2950 16 / 1 2
2013 SPARC T5 Oracle 3.6 GHz 28 nm 1500 16 / 1 8
2014 POWER8 IBM 2.5–5 GHz 22 nm 4200 6, 12 / 1, 2 8
2015 z13 IBM 5 GHz 22 nm 3990 8 / 1 2
2015 A8-7670K AMD 3.6 GHz 28 nm 2410 4 / 1 1
2017 Ryzen AMD 3.2–4.1 GHz 14 nm 4800 8, 16, 32 / 1, 2, 4 2
2017 z14 IBM 5.2 GHz 14 nm 6100 10 / 1 2
2017 POWER9 IBM 4 GHz 14 nm 8000 12, 24 / 1 4, 8
2017 SPARC M8[54] Oracle 5 GHz 20 nm ~10,000[55] 32 8
2019 Ryzen 2 AMD 2-4.7 GHz 7 nm 3900 6, 8, 12, 16, 24, 32, 64 / 1, 2, 4 2

See also

References and notes

References
  1. Belzer, Jack; Holzman, Albert G.; Kent, Allen (1978). Encyclopedia of Computer Science and Technology: Volume 10 - Linear and Matrix Algebra to Microorganisms: Computer-Assisted Identification. CRC Press. p. 402. ISBN 9780824722609.
  2. Ogdin 1975, pp. 57–59, 77
  3. 1970s: Development and evolution of microprocessors, Semiconductor History Museum of Japan
  4. Ogdin 1975, pp. 72, 77
  5. "Rockwell PPS-4". The Antique Chip Collector's Page. Retrieved 2010-06-14.
  6. Ryoichi Mori; Hiroaki Tajima; Morihiko Tajima; Yoshikuni Okada (October 1977). "Microprocessors in Japan". Euromicro Newsletter. 3 (4): 50–7 (51, Table 2.2). doi:10.1016/0303-1268(77)90111-0.
  7. "NEC 751 (uCOM-4)". The Antique Chip Collector's Page. Archived from the original on 2011-05-25. Retrieved 2010-06-11.
  8. Ogdin 1975, p. 77
  9. 1973: 12-bit engine-control microprocessor (Toshiba), Semiconductor History Museum of Japan
  10. Ogdin 1975, pp. 55, 77
  11. Ogdin 1975, pp. 65, 77
  12. David Russell (February 1978). "Microprocessor survey". Microprocessors. 2 (1): 13–20, See p. 18. doi:10.1016/0308-5953(78)90071-5.
  13. Allen Kent, James G. Williams, ed. (1990). "Evolution of Computerized Maintenance Management to Generation of Random Numbers". Encyclopedia of Microcomputers. 7. Marcel Dekker. p. 336. ISBN 0-8247-2706-1.
  14. Little, Jeff (2009-03-04). "Intersil Intercept Jr". ClassicCmp.
  15. "Intersil IM6100 CMOS 12 Bit Microprocessor family databook" (PDF).
  16. "RCA COSMAC 1801". The Antique Chip Collector's Page. Retrieved 2010-06-14.
  17. "CDP 1800 μP Commercially available" (PDF). Microcomputer Digest. 2 (4): 1–3. October 1975.
  18. Ogdin 1975, pp. 70, 77
  19. "National Semiconductor IMP-16". The Antique Chip Collector's Page. Retrieved 2010-06-14.
  20. "Hybrid Microprocessor". Retrieved 2008-06-15.
  21. "HP designs Custom 16-bit μC Chip" (PDF). Microcomputer Digest. 2 (4): 8. October 1975.
  22. "Microprocessors — The Early Years 1971–1974". The Antique Chip Collector's Page. Retrieved 2010-06-16.
  23. "CP1600 16-Bit Single-Chip Microprocessor" (PDF). data sheet. General Instrument. 1977. Archived from the original (PDF) on 2011-05-26. Retrieved 2010-06-18.
  24. "RCA COSMAC 1802". The Antique Chip Collector's Page. Archived from the original on 2013-01-02. Retrieved 2010-06-14.
  25. "CDP 1802" (PDF). Microcomputer Digest. 2 (10): 1, 4. April 1976.
  26. Hans Hoffman; John Nemec (April 1977). "A fast microprocessor for control applications". Euromicro Newsletter. 3 (3): 53–59. doi:10.1016/0303-1268(77)90010-4.
  27. "Microprocessors — The Explosion 1975–1976". The Antique Chip Collector's Page. Archived from the original on 2009-09-09. Retrieved 2010-06-18.
  28. "Chip Hall of Fame: Motorola MC68000 Microprocessor". IEEE Spectrum. Institute of Electrical and Electronics Engineers. 30 June 2017. Retrieved 19 June 2019.
  29. Harris CMOS Digital Data Book (PDF). pp. 4–3–21.
  30. "Berkeley Hardware Prototypes". Retrieved 2008-06-15.
  31. Patterson, David A. (1985). "Reduced instruction set computers". Communications of the ACM. 28: 8–21. doi:10.1145/2465.214917.
  32. "Forth chips list". UltraTechnology. 2010.
  33. Koopman, Philip J. (1989). "4.4 Architecture of the NOVIX NC4016". Stack Computers: the new wave. E. Horwood. ISBN 0745804187.
  34. Hand, Tom (1994). "The Harris RTX 2000 Microcontroller" (PDF). Journal of Forth Application and Research. 6 (1). ISSN 0738-2022.
  35. "Fujitsu to take ARM into the realm of Super". The CPU Shack Museum. June 21, 2016. Retrieved 30 June 2019.
  36. "Fujitsu SPARC". cpu-collection.de. Retrieved 30 June 2019.
  37. "Timeline". SPARC International. Retrieved 30 June 2019.
  38. Kimura S, Komoto Y, Yano Y (1988). "Implementation of the V60/V70 and its FRM function". IEEE Micro. 8 (2): 22–36. doi:10.1109/40.527.
  39. C Green; P Gülzow; L Johnson; K Meinzer; J Miller (Mar–Apr 1999). "The Experimental IHU-2 Aboard P3D". Amsat Journal. 22 (2). The first processor using these principles, called ARM-1, was fabricated by VLSI in April 1985, and gave startling performance for the time, whilst using barely 25,000 transistors
  40. Inayoshi H, Kawasaki I, Nishimukai T, Sakamura K (1988). "Realization of Gmicro/200". IEEE Micro. 8 (2): 12–21. doi:10.1109/40.526.
  41. "Intel i960 Embedded Microprocessor". National High Magnetic Field Laboratory. Florida State University. 3 March 2003. Retrieved 29 June 2019.
  42. Moore CR, Balser DM, Muhich JS, East RE (1992). "IBM Single Chip RISC Processor (RSC)" (PDF). Proceedings of the 1991 IEEE International Conference on Computer Design on VLSI in Computer & Processors. IEEE Computer Society. pp. 200–4. ISBN 0-8186-3110-4.
  43. "Embedded-DSP SuperH Family and Its Applications" (PDF). Hitachi Review. Hitachi. 47 (4): 121–7. 1998. Retrieved 5 July 2019.
  44. "SH Microprocessor Leading the Nomadic Era" (PDF). Semiconductor History Museum of Japan. Retrieved 27 June 2019.
  45. "PA-RISC Processors". Retrieved 2008-05-11.
  46. "HARP-1: A 120 MHz Superscalar PA-RISC Processor" (PDF). Hitachi. Retrieved 19 June 2019.
  47. "Entertainment Systems and High-Performance Processor SH-4" (PDF). Hitachi Review. Hitachi. 48 (2): 58–63. 1999. Retrieved 27 June 2019.
  48. "Remembering the Sega Dreamcast". Bit-Tech. September 29, 2009. Retrieved 18 June 2019.
  49. "EMOTION ENGINE® AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION® BECOME ONE CHIP" (PDF). Sony. April 21, 2003. Retrieved 26 June 2019.
  50. Hennessy, John L.; Patterson, David A. (29 May 2002). Computer Architecture: A Quantitative Approach (3 ed.). Morgan Kaufmann. p. 491. ISBN 978-0-08-050252-6. Retrieved 9 April 2013.
  51. Anand Lal Shimpi (10 January 2011). "A Closer Look at the Sandy Bridge Die". AnandTech.
  52. renethx (10 November 2011). "Cedar (HD 5450) and Zacate (E350) are manufactured in TSMC 40 nm process". AMD Zacate — the next great HTPC chip?. AVS Forum.
  53. "AMD Revises Bulldozer Transistor Count: 1.2B, not 2B". AnandTech. 2 December 2011.
  54. "Sparc M8 processor" (PDF). Oracle main website. Oracle Corp. Retrieved 3 March 2019.
  55. https://www.nextplatform.com/2017/09/18/m8-last-hurrah-oracle-sparc/
Notes
  1. According to Ogdin 1975, the Fairchild PPS-25 was first delivered in 2Q 1971 and the Intel 4004 in 4Q 1971.
  2. The Intel 8088 had an 8-bit external data bus, but internally used a 16-bit architecture.
  3. The Motorola 68000 had a 16-bit external data bus, but internally used 32-bit registers.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.