Orders of magnitude (acceleration)

This page lists examples of the acceleration occurring in various situations. They are grouped by orders of magnitude.

Factor
[m/s2]
Multiple Reference frame Value [g] Item
100 1 m/s2 inertial 0 m/s2 0 g The gyro rotors in Gravity Probe B and the free-floating
proof masses in the TRIAD I navigation satellite[1]
inertial 0 m/s2 0 g Weightless parabola in a reduced-gravity aircraft
lab 5×1014 m/s2 5×1015 g Smallest acceleration in a scientific experiment[2]
lab 0.25 m/s2 0.026 g Train acceleration for SJ X2
inertial 1.62 m/s2 0.1654 g Standing on the Moon at its equator
lab 4.3 m/s2 0.44 g Car acceleration 0–100 km/h in 6.4 s with a Saab 9-5 Hirsch
inertial 9.80665 m/s2 1 g Standard gravity, the gravity acceleration on Earth at sea level standard[3]
101 1 dam/s2 inertial 11.2 m/s2 1.14 g Saturn V moon rocket just after launch
inertial 15.2 m/s2 1.55 g Bugatti Veyron from 0 to 100 km/h in 2.4 s (the net acceleration vector including gravitational acceleration is directed 40 degrees from horizontal)
inertial 29 m/s2 3 g Space Shuttle, maximum during launch and reentry
inertial 29 m/s2 3 g Sustainable for > 25 seconds, for a human[3]
inertial 34 – 62 m/s2 3.5 – 6.3 g High-G roller coasters[4]:340
lab? 41 m/s2 4.2 g Top Fuel drag racing world record of 4.4 s over 1/4 mile
inertial 49 m/s2 5 g Causes disorientation, dizziness and fainting in humans[3]
lab? 49+ m/s2 5+ g Formula One car, maximum under heavy braking
inertial? 51 m/s2 5.2 g Luge, maximum expected at the Whistler Sliding Centre
lab 49 – 59 m/s2 5 – 6 g Formula One car, peak lateral in turns[5]
inertial 59 m/s2 6 g Parachutist peak during normal opening of parachute[6]
inertial +69 / -49 m/s2 +7 / -5 g Standard, full aerobatics certified glider
inertial 70.6 m/s2 7.19 g Apollo 16 on reentry[7]
inertial 79 m/s2 8 g F-16 aircraft pulling out of dive
inertial 88 m/s2 9 g Maximum for a fit, trained person with G-suit to keep consciousness, avoiding G-LOC
inertial 88 – 118 m/s2 9 – 12 g Typical maximum turn acceleration in an aerobatic plane or fighter jet[8]
102 1 hm/s2 inertial 147 m/s2 15 g Explosive seat ejection from aircraft
177 m/s2 18 g Physical damage in humans like broken capillaries[3]
209 m/s2 21.3 g Peak acceleration experienced by cosmonauts during the Soyuz 18a abort[9]
333 m/s2 34 g Peak deceleration of the Stardust Sample Return Capsule on reentry to Earth[10]
454 m/s2 46.2 g Maximum acceleration a human has survived on a rocket sled[3]
> 491 m/s2 > 50 g Death or serious injury likely
982 m/s2 100 g Sprint missile[11]
982 m/s2 100 g Automobile crash (100 km/h into wall)[12]
> 982 m/s2 > 100 g Brief human exposure survived in crash[13]
982 m/s2 100 g Deadly limit for most humans
103 1 km/s2 inertial
 lab
1540 m/s2 157 g Peak acceleration of fastest rocket sled run[14]
1964 m/s2 200 g 3.5" hard disc non-operating shock tolerance for 2 ms, weight 0.6 kg[15]
2490 m/s2 254 g Peak deceleration experienced by Jules Bianchi in crash of Marussia MR03, 2014 Japanese Grand Prix[16]
2946 m/s2 300 g Soccer ball struck by foot
3200 m/s2 320 g A jumping human flea[17]
3800 m/s2 380 g A jumping click beetle[18]
104 10 km/s2 11 768 m/s2 1200 g Deceleration of the head of a woodpecker[19]
17 680 m/s2 1800 g Space gun with a barrel length of 1 km and a muzzle velocity of 6 km/s,
as proposed by Quicklaunch (assuming constant acceleration)
29460 m/s2 3000 g Baseball struck by bat[12]
>49 100 m/s2 > 5000 g Shock capability of mechanical wrist watches[20]
84 450 m/s2 8600 g Current Formula One engines, maximum piston acceleration[21]
105 100 km/s2 102 000 m/s2 10 400 g A mantis shrimp punch[22]
152 210 m/s2 15 500 g Rating of electronics built into military artillery shells[23]
196 400 m/s2 20 000 g Spore acceleration of the Pilobolus fungi[24]
304 420 m/s2 31 000 g 9×19mm Parabellum handgun bullet (average along the length of the barrel)[25]
106 1 Mm/s2 1 000 000 m/s2 100 000 g Closing jaws of a trap-jaw ant[26]
1 865 800 m/s2 190 000 g 9×19mm Parabellum handgun bullet, peak[27]
3 800 000 m/s2 390 000 g Surface gravity of white dwarf Sirius B[28]
3 900 000 m/s2 slightly below 400 000 g Ultracentrifuge[29]
107 10 Mm/s2 53 000 000 m/s2 5 400 000 g Jellyfish stinger[30]
1012 1 Tm/s2 7×1012 m/s2 7×1011 g Max surface gravity of a neutron star
2.1×1013 m/s2 2.1×1012 g Protons in the Large Hadron Collider[31]
1021 1 Zm/s2 9.149×1021 m/s2 9.33×1020 g Classical (Bohr model) acceleration of an electron around a 1H nucleus.
176×1021 m/s2 1.79×1022 g Electrons in a 1 TV/m wakefield accelerator[32]
1051 1051 m/s2 5.561×1051 m/s2 5.67×1050 g Planck acceleration[33]

See also

References

  1. Stanford University: Gravity Probe B, Payload & Spacecraft, and NASA: Investigation of Drag-Free Control Technology for Earth Science Constellation Missions. The TRIAD 1 satellite was a later, more advanced navigation satellite that was part of the U.S. Navy’s Transit, or NAVSAT system.
  2. Gundlach, J. H; Schlamminger, S; Spitzer, C. D; Choi, K. -Y; Woodahl, B. A; Coy, J. J; Fischbach, E (2007). "Laboratory Test of Newton's Second Law for Small Accelerations". Physical Review Letters. 98 (15): 150801. Bibcode:2007PhRvL..98o0801G. doi:10.1103/PhysRevLett.98.150801. PMID 17501332.
  3. 1 2 3 4 5 csel.eng.ohio-state.edu - High Acceleration and the Human Body, Martin Voshell, November 28, 2004 Archived August 19, 2014, at the Wayback Machine.
  4. George Bibel. Beyond the Black Box: the Forensics of Airplane Crashes. Johns Hopkins University Press, 2008. ISBN 0-8018-8631-7.
  5. 6 g has been recorded in the 130R turn at Suzuka circuit, Japan. Many turns have 5 g peak values, like turn 8 at Istanbul or Eau Rouge at Spa
  6. http://www.pcprg.com/g-forces.htm
  7. NASA: SP-368 Biomedical Results of Apollo, Chapter 5: Environmental Factors, Table 2: Apollo Manned Space Flight Reentry G Levels
  8. "Maxed out: How many gs can you pull?". New Scientist. Retrieved 2017-11-19.
  9. Hall, Rex; David Shayler (2003). Soyuz, A Universal Spacecraft. Springer Praxis. p. 193. ISBN 978-1-85233-657-8.
  10. ReVelle, D. O.; Edwards, W. N. (2007). "Stardust—An artificial, low-velocity "meteor" fall and recovery: 15 January 2006". Meteoritics and Planetary Science. 42 (2): 271. Bibcode:2007M&PS...42..271R. doi:10.1111/j.1945-5100.2007.tb00232.x.
  11. Sprint
  12. 1 2 tomshardware.co.uk - Hard Drive Shock Tolerance - Hard-Disks - Storage, Physics, by O'hanian, 1989, 2007-01-03
  13. “Several Indy car drivers have withstood impacts in excess of 100 G without serious injuries.” Dennis F. Shanahan, M.D., M.P.H.: ”Human Tolerance and Crash Survivability, citing Society of Automotive Engineers. Indy racecar crash analysis. Automotive Engineering International, June 1999, 87–90. And National Highway Traffic Safety Administration: Recording Automotive Crash Event Data
  14. http://www.holloman.af.mil/library/factsheets/factsheet_print.asp?fsID=6130&page=1
  15. wdc.com - Legacy Product Specifications : WD600BB, read 2012-01-11
  16. "Formula 1 - Bianchi crash impact was 254g". uk.eurosport.yahoo.com. 23 July 2015. Archived from the original on 23 July 2015.
  17. Evans, M. E. G (2009). "The jump of the click beetle (Coleoptera, Elateridae)—a preliminary study". Journal of Zoology. 167 (3): 319–336. doi:10.1111/j.1469-7998.1972.tb03115.x.
  18. http://www.its.caltech.edu/~biomech/papers/BennetClarkLucey1967.pdf
  19. S-H Yoon; S Park (17 January 2011). "A mechanical analysis of woodpecker drumming and its application to shock-absorbing systems" (PDF). Bioinspiration & Biomimetics. 6 (1): 12. Bibcode:2011BiBi....6a6003Y. doi:10.1088/1748-3182/6/1/016003. PMID 21245520. Retrieved 10 January 2016.
  20. Omega , Ball Watch Technology
  21. Cosworth V8 engine ; Up to 10,000 g before rev limits
  22. S. N. Patek, W. L. Korff & R. L. Caldwell (2004). "Deadly strike mechanism of a mantis shrimp" (PDF). Nature. 428 (6985): 819–820. Bibcode:2004Natur.428..819P. doi:10.1038/428819a. PMID 15103366.
  23. "L-3 Communication's IEC Awarded Contract with Raytheon for Common Air Launched Navigation System".
  24. bu.edu - Rockets in Horse Poop, 2010-12-10
  25. Assuming an 8.04 gram bullet, a muzzle velocity of 350 metres per second (1,100 ft/s), and a 102 mm barrel.
  26. Patek SN, Baio JE, Fisher BL, Suarez AV (22 August 2006). "Multifunctionality and mechanical origins: Ballistic jaw propulsion in trap-jaw ants" (PDF). Proceedings of the National Academy of Sciences. 103 (34): 12787–12792. Bibcode:2006PNAS..10312787P. doi:10.1073/pnas.0604290103. PMC 1568925. PMID 16924120. Retrieved 7 June 2008.
  27. Assuming an 8.04 gram bullet, a peak pressure of 240 MPa (35,000 psi) and 440 N of friction.
  28. Holberg, J. B.; Barstow, M. A.; Bruhweiler, F. C.; Cruise, A. M.; Penny, A. J. (1998). "Sirius B: A New, More Accurate View". The Astrophysical Journal. 497 (2): 935–942. Bibcode:1998ApJ...497..935H. doi:10.1086/305489.
  29. Berkeley Physics Course, vol. 1, Mechanics, fig. 4.1 (authors Kittel-Knight-Ruderman, 1973 edition)
  30. Tibballs, J; Yanagihara, A. A; Turner, H. C; Winkel, K (2011). "Immunological and Toxinological Responses to Jellyfish Stings". Inflammation & Allergy Drug Targets. 10 (5): 438–446. PMC 3773479. PMID 21824077.
  31. Calculated from their speed and radius, approximating the LHC as a circle.
  32. Rosenzweig, J. B; Andonian, G; Bucksbaum, P; Ferrario, M; Full, S; Fukusawa, A; Hemsing, E; Hidding, B; Hogan, M; Krejcik, P; Muggli, P; Marcus, G; Marinelli, A; Musumeci, P; O'Shea, B; Pellegrini, C; Schiller, D; Travish, G (2011). "Teravolt-per-meter beam and plasma fields from low-charge femtosecond electron beams". Nuclear Instruments and Methods in Physics Research A. 653 (1): 98. arXiv:1002.1976. Bibcode:2011NIMPA.653...98R. doi:10.1016/j.nima.2011.01.073.
  33. "Wolfram|Alpha: Computational Knowledge Engine". www.wolframalpha.com. Retrieved 2016-07-25.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.