Human mitochondrial DNA haplogroup

Contemporary human mtDNA haplogroup distribution, based on analysis of 2,054 individuals from 26 populations.[1] (a) Pie charts on the map. (b) Counts of haplogroups in table format. For populations details, see 1000 Genomes Project#Human genome samples.

In human genetics, a human mitochondrial DNA haplogroup is a haplogroup defined by differences in human mitochondrial DNA. Haplogroups are used to represent the major branch points on the mitochondrial phylogenetic tree. Understanding the evolutionary path of the female lineage has helped population geneticists trace the matrilineal inheritance of modern humans back to human origins in Africa and the subsequent spread around the globe.

The letter names of the haplogroups (not just mitochondrial DNA haplogroups) run from A to Z. As haplogroups were named in the order of their discovery, the alphabetical ordering does not have any meaning in terms of actual genetic relationships.

The hypothetical woman at the root of all these groups (meaning just the mitochondrial DNA haplogroups) is the matrilineal most recent common ancestor (MRCA) for all currently living humans. She is commonly called Mitochondrial Eve.

The rate at which mitochondrial DNA mutates is known as the mitochondrial molecular clock. It's an area of ongoing research with one study reporting one mutation per 8000 years.[2] This makes mitochondrial DNA less precise for genealogical dating than Y-chromosome DNA which accumulates one mutation for every 10 years.[3]

Evolutionary relationship

Lineage perspective

mtDNA haplogroup tree and distribution map.[4] The numbers are haplogroup labels, reported according to the http://www.phylotree.org/ nomenclature,[5] and give the location of one of the mutations leading to the derived haplotype. (Only a single branch defining marker, preferably from the coding region, is shown.) The main geographic features of haplogroup distribution are highlighted with colour.
Part of a series on
Genetic genealogy
Concepts
Related topics

This phylogenetic tree is based on the Van Oven 2009 tree[5] and subsequent published research.

Table perspective

Phylogenetic tree of human mitochondrial DNA (mtDNA) haplogroups

  Mitochondrial Eve (L)    
L0 L1–6  
L1 L2   L3     L4 L5 L6
M N  
CZ D E G Q   O A S R   I W X Y
C Z B F R0   pre-JT   P   U
HV JT K
H V J T

Chronological development of haplogroups

Estimated world map of human migrations based on mtDNA haplogroups.

Haplogroups present in Europe

While Bryan Sykes claimed there were seven "daughters" – or major mitochondrial lineages – among modern Europeans (H, J, K, T, V, X and U - essentially subclade U5)[6], other scientists put the number at 10–12 - for instance, Richards et al include I, W and N1b within their pan-european survey (but - illustrating how complex the question can be - also separate out pre-V, HV1 and pre-HV1, and separate out U to include U1, U2, U3, U4 and U7 as well as U5). [7] The additional "daughters" are generally said to include haplogroups I, M and W. A 2012 paper suggested that the haplogroups most common in modern European populations were: H, J, K, N1, T, U4, U5, V, X and W.[8]

Since a single mutation may define a haplogroup, the total number of "European mtDNA haplogroups" – even if they are defined only as those mentioned above and their descendant clades – is ultimately subjective, could theoretically number in the millions, and be continually increasing.

Haplogroup Possible time of origin Possible place of origin Highest frequencies
N75,000 years agoWestern Asia, or India
R70,000 years agoWestern Asia or India
U60,000 years agoNorth-East Africa or India (South Asia)
pre-JT55,000 years agoMiddle East
JT50,000 years agoMiddle East
U550,000 years agoWestern Asia
U650,000 years agoNorth Africa
U850,000 years agoWestern Asia
pre-HV50,000 years agoNear East
J45,000 years agoIndia or Near East or Caucasus
HV40,000 years agoNear East
Hover 35,000 years agoWestern Asia
Xover 30,000 years agonorth-east Europe
U5a130,000 years agoEurope
I30,000 years agoCaucasus or north-east Europe
J1a27,000 years agoNear East
W25,000 years agonorth-east Europe or north-west Asia
U425,000 years agoCentral Asia
J1b23,000 years agoNear East
T17,000 years agoMesopotamia
K16,000 years agoNear East
V15,000 years agoNorth-West Africa (Iberomaurisian) and moved to Iberia and Scandinavia
H1b13,000 years agoEurope
K112,000 years agoNear East
H310,000 years agoWestern Europe (Spain)

Haplogroups present in Africa

L0,L1,L2,L3,L4,L5,L6,T,U5a

Australian haplogroups

M42a, M42c, M14, M15, Q, S, O, N, P. (Refs 1,2,3,4,5,6)

M sub groups that are currently identified as specific to Australia are M42a, M42c, M14 and M15. Also Q1, Q1b, Q3a1 in northern Australia (Q is a major sub division of M also found in New Guinea.

N sub-groups are S, O (Australia).

R (itself derived from N) : P N: S & O. S: Haplogroup S has a wide distribution in Australia and has several major subclades, S1, S1a, S1b, S1b1, S1b2, S1b3, S2, S2a, S2b, S3, S4. The ancient matriline, called S1a has been characterised by complete and partial mt genomes in New South Wales, central, western, south Australia, Northern Territory (Refs)and in Tasmania by partial sequences (ref 8) O haplogroup: O1, O2 identified by complete mt genome have been identified in southern, northern and western Australia.

P haplogroup:

Widespread in PNG, Timor (Ref 7), northern and eastern Australia. The Darling River region of NSW has a distinctive sub-clade called

P4b (now called P11), further diversified by into several distinct but culturally connected family lineages (van Holst Pellekaan 2011) and 2013.

References:

  1. van Holst Pellekaan, S.M., Ingman, M., Roberts-Thomson, J., & Harding, R. M. 2006. Mitochondrial genomics identifies major haplogroups in Aboriginal Australians. American J Physical Anthropology. 131:282-294.
  2. van Holst Pellekaan, S., 2011. Genetic evidence for the colonization of Australia, Quaternary International.doi:10.1016/j.quaint.2011.04.014.
  3. van Holst Pellekaan, Sheila M (March 2013) Origins of the Australian and New Guinean Aborigines. In: eLS 2013, John Wiley & Sons Ltd: Chichester http://www.els.net
  4. Nano Nagle1, Mannis van Oven2, Stephen Wilcox3, Sheila van Holst Pellekaan4,5, Chris Tyler-Smith6, Yali Xue6, Kaye N. Ballantyne2,7, Leah Wilcox1, Luka Papac1, Karen Cooke1, Roland A. H. van Oorschot7, Peter McAllister8, Lesley Williams9, Manfred Kayser2, R. John Mitchell1 & The Genographic Consortium#. Aboriginal Australian mitochondrial genome variation – an increased understanding of population antiquity and diversity. Scientific Reports | 7:43041 | DOI: 10.1038/srep43041
  5. Rasmussen, M., Guo, X., Wang, Y., Lohmueller, K. E., Rasmussen, S., Albrechtsen, A., Skotte, L., Lindgreen, S., Metspalu, M., Jombart, T., Kivisild, T., Zhai, W., Eriksson, A., Manica, A., Orlando, L., De La Vega, F. M., Tridico, S., Metspalu, E., Nielsen, K., Avila-Arcos, M. C., Moreno-Mayar, J. V., Muller, C., Dortch, J., Gilbert, M. T., Lund, O., Wesolowska, A., Karmin, M., Weinert, L. A., Wang, B., Li, J., Tai, S., Xiao, F., Hanihara, T., Van Driem, G., Jha, A. R., Ricaut, F. X., De Knijff, P., Migliano, A. B., Gallego Romero, I., Kristiansen, K., Lambert, D. M., Brunak, S., Forster, P., Brinkmann, B., Nehlich, O., Bunce, M., Richards, M., Gupta, R., Bustamante, C. D., Krogh, A., Foley, R. A., Lahr, M. M., Balloux, F., Sicheritz-Ponten, T., Villems, R., Nielsen, R., Wang, J. & Willerslev, E. 2011. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science, 334, 94-8.
  6. Ray Tobler1*, Adam Rohrlach2,3*, Julien Soubrier1,4, Pere Bover1, Bastien Llamas1, Jonathan Tuke2,3, Nigel Bean2,3, Ali Abdullah-Highfold5, Shane Agius5, Amy O’Donoghue5, Isabel O’Loughlin5, Peter Sutton5,6, Fran Zilio5, Keryn Walshe5, Alan N. Williams7, Chris S.M. Turney7, Matthew Williams1,8, Stephen M. Richards1, Robert J. Mitchell9, Emma Kowal10, John R. Stephen11, Lesley Williams12, Wolfgang Haak1,13§ & Alan Cooper1,14§ Aboriginal mitogenomes reveal 50,000 years of regionalism in Australia doi:10.1038/nature21416
  7. Gomes, S. M., Bodner, M., Souto, L., Zimmermann, B., Huber, G., Strobl, C., Röck, A. W., Achilli, A., Olivieri, A., Torroni, A., Côrte-Real, F. & Parson, W. 2015. Human settlement history between Sunda and Sahul: a focus on East Timor (Timor-Leste) and the Pleistocenic mtDNA diversity. BMC Genomics, 16.
  8. Ref: Presser JC, Deverell AJ, Redd A, and Stoneking M. 2002.Tasmanian Aborigines and DNA. Papers and Proceedings of the Royal Society of Tasmania, 136:35-38).
  9. Hudjashov, G., Kivisild, T., Underhill, P. A., Endicott, P., Sanchez, J. J., Lin, A. A., Shen, P., Oefner, P., Renfrew, C., Villems, R. & Forster, P. 2007. Revealing the prehistoric settlement of Australia by Y chromosome and mtDNA analysis. Proc Natl Acad Sci U S A, 104, 8726-30.

Asian haplogroups

F, C, W, M, D, N, K, U, T, A, B, C, Z, U many number variants to each section

See also

References

  1. Rishishwar L, Jordan IK (2017). "Implications of human evolution and admixture for mitochondrial replacement therapy". BMC Genomics. 18 (1): 140. doi:10.1186/s12864-017-3539-3. PMC 5299762. PMID 28178941.
  2. Loogvali, Eva-Liis; Kivisild, Toomas; Margus, Tõnu; Villems, Richard (2009), O'Rourke, Dennis, ed., "Explaining the Imperfection of the Molecular Clock of Hominid Mitochondria", PLoS ONE, 4 (12): e8260, doi:10.1371/journal.pone.0008260, PMC 2794369, PMID 20041137
  3. "Human mutation rate revealed". Nature News. 2009. Retrieved 18 September 2017.
  4. Kivisild T (2015). "Maternal ancestry and population history from whole mitochondrial genomes". Investig Genet. 6: 3. doi:10.1186/s13323-015-0022-2. PMC 4367903. PMID 25798216.
  5. 1 2 van Oven M, Kayser M (February 2009). "Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation". Human Mutation. 30 (2): E386–94. doi:10.1002/humu.20921. PMID 18853457.
  6. The Seven Daughters of Eve: The Science That Reveals Our Genetic Ancestry, W.W. Norton, 17 May 2002, hardcover, 306 pages, ISBN 0-393-02018-5
  7. Richards, Martin; Macaulay, Vincent; Torroni, Antonio; Bandelt, Hans-Jürgen (November 2002). "In Search of Geographical Patterns in European Mitochondrial DNA". The American Journal of Human Genetics. 71 (5): 1168–1174. doi:10.1086/342930. Retrieved 1 October 2017.
  8. "Disuniting Uniformity: A Pied Cladistic Canvas of mtDNA haplogroup H in Eurasia"
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.