Sex chromosome

A sex chromosome, (also referred to as an allosome, heterotypical chromosome, or heterochromosome,[1][2] or idiochromosome[3]) is a chromosome that differs from an ordinary autosome in form, size, and behavior. The human sex chromosomes, a typical pair of mammal allosomes, determine the sex of an individual created in sexual reproduction. Autosomes differ from allosomes because autosomes appear in pairs whose members have the same form but differ from other pairs in a diploid cell, whereas members of an allosome pair may differ from one another and thereby determine sex.

Human male XY chromosomes after G-banding

Nettie Stevens and Edmund Beecher Wilson both independently discovered sex chromosomes in 1905. However, Stevens is credited for discovering them earlier than Wilson.[4]

Differentiation

In humans, each cell nucleus contains 23 pairs of chromosomes, a total of 46 chromosomes. The first 22 pairs are called autosomes. Autosomes are homologous chromosomes i.e. chromosomes which contain the same genes (regions of DNA) in the same order along their chromosomal arms. The chromosomes of the 23rd pair are called allosomes consisting of two X chromosomes in most females, and an X chromosome and a Y chromosome in most males. Females therefore have 23 homologous chromosome pairs, while males have 22. The X and Y chromosomes have small regions of homology called pseudoautosomal regions.

The X chromosome is always present as the 23rd chromosome in the ovum, while either an X or a Y chromosome can be present in an individual sperm.[5] Early in female embryonic development, in cells other than egg cells, one of the X chromosomes is randomly and permanently partially deactivated: In some cells the X chromosome inherited from the mother is deactivated, while in others the X chromosome from the father is deactivated. This ensures that both sexes always have exactly one functional copy of the X chromosome in each body cell. The deactivated X-chromosome is silenced by repressive heterochromatin that compacts the DNA and prevents expression of most genes (see X-inactivation). This compaction is regulated by PRC2 (Polycomb Repressive Complex 2).[6]

Sex determination

All diploid organisms with allosome-determined sex get half of their allosomes from each of their parents. In mammals, females are XX, they can pass along either of their X's, and since the males are XY they can pass along either an X or a Y. For a mammal to be chromosomally female, the individual must receive an X chromosome from both parents, whereas to be chromosomally male, the individual must receive a X chromosome from their mother and a Y chromosome from their father. It is thus the male's sperm that determines the sex of each offspring in humans.

However, a small percentage of humans have a divergent sexual development, known as intersex. This can result from allosomes that are neither XX nor XY. It can also occur when two fertilized embryo fuse, producing a chimera that might contain two different sets of DNA one XX and the other XY. It could also result from exposure, often in utero, to chemicals that disrupt the normal conversion of the allosomes into sex hormones and further into the development of either ambiguous outer genitalia or internal organs.[7]

Previous theories on Sex Determination

Ever since the discovery of X-inactivation through research into Calico cats, it has been postulated that X-inactivation plays a role in genetic sex determination in humans. Initially, there were many theories as to how exactly X-inactivation influences sex. To understand one such theory, you can take the following scenario into consideration: a DNA sequence that is concerned with the creation of a male-trait is regulated by a regulatory DNA sequence. If the regulatory DNA sequence allows the main sequence to be expressed, the male-trait will appear in the phenotype, otherwise not. An explanation for this theory is that the X-chromosome simply inactivates in the presence of another X-chromosome; this causes XX-chromosome humans to have a lower frequency of the regulatory gene (given that both X and Y chromosomes have an equal frequency of the regulator) and so the expression of the male trait is prevented from appearing in the phenotype.[8]

A picture depicting the locus of the SRY gene on the Y-chromosome.

Sex Determination as understood today

Theories like the one above have become redundant now, however. In the past, there wasn't much evidence supporting the idea that X-chromosome inactivation occurred due to dosage compensation.[8] At present, it is believed that one X-chromosome in female humans is inactivated (twisted in a Barr body so that its DNA sequences can't be accessed). This leaves only one functioning X-chromosome in both male and female humans, thereby equalizing “dosage.”[9]

But dosage regulation isn't all there is to genetic sex determination. There is a gene in the Y-chromosome that has regulatory sequences that control genes that code for maleness. This gene is called the SRY gene. The SRY sequence's prominence in sex determination was discovered when the genetics of sex-reversed XX men(i.e. humans who possessed biological male-traits but actually had XX allosomes) were studied. After examination, it was discovered that the difference between a typical XX individual (traditional female) and a sex-reversed XX man was that the typical individuals lacked the SRY gene. It is theorized that in sex-reversed XX men, the SRY mistakenly gets translocated to an X-chromosome in the XX pair during meiosis. Any how, this experimentation had proved the SRY gene's role in genetic sex determination.[10]

Other vertebrates

It is argued that humans have developed a complex system of genetic sex determination due to their status as highly complex chordates.[11] Lower chordates, such as fish, amphibians and reptiles, have systems that are influenced by the environment. Fish and amphibians, for example, have genetic sex determination but their sex can also be influenced by externally available steroids and incubation temperature of eggs.[12][13] In reptiles, only incubation temperature determines sex.

Many scientists argue that Sex Determination in flowering plants is more complex than that in humans. This is because even the flowering plant subset has a variety of mating systems. Their Sex Determination is primarily regulated by MADS-box genes. These genes code for proteins that form the sex organs in flowers.[14]

Understanding Sex Determination in other taxonomic groups allows us to understand human Sex Determination better, as well as place humans in the phylogenetic tree more accurately.

Plants

Sex chromosomes are most common in bryophytes, relatively common in vascular plants and unknown in ferns and lycophytes.[15] The diversity of plants is reflected in their sex-determination systems, which include XY and UV systems as well as many variants. Sex chromosomes have evolved independently across many plant groups. Recombination of chromosomes may lead to heterogamety before the development of sex chromosomes, or recombination may be reduced after sex chromosomes develop.[16] Only a few pseudoautosomal regions normally remain once sex chromosomes are fully differentiated. When chromosomes do not recombine, neutral sequence divergences begin to accumulate, which has been used to estimate the age of sex chromosomes in various plant lineages. Even the oldest estimated divergence, in the liverwort Marchantia polymorpha, is more recent than mammal or bird divergence. Due to this recency, most plant sex chromosomes also have relatively small sex-linked regions. Current evidence does not support the existence of plant sex chromosomes more ancient than those of M. polymorpha.[17]

The high prevalence of autopolyploidy in plants also impacts the structure of their sex chromosomes. Polyploidization can occur before and after the development of sex chromsomes. If it occurs after sex chromosomes are established, dosage should stay consistent between the sex chromosomes and autosomes, with minimal impact on sex differentiation. If it occurs before sex chromosomes become heteromorphic, as is likely in the octoploid red sorrel Rumex acetosella, sex is determined in a single XY system. In a more complicated system, the sandalwood species Viscum fischeri has X1X1X2X2 chromosomes in females, and X1X2Y chromosomes in males.[18]

Non-vascular plants

Ferns and lycophytes have bisexual gametophytes and so there is no evidence for sex chromosomes.[15] In the bryophytes, including liverworts, hornworts and mosses, sex chromosomes are common. The sex chromosomes in bryophetes affect what type of gamete is produced by the gametophyte, and there is wide diversity in gametophyte type. Unlike seed plants, where gametophytes are always unisexual, in bryophytes they may produce male, female, or both types of gamete.[19]

Bryophytes most commonly employ a UV sex-determination system, where U produces female gametophytes and V produces male gametophytes. The U and V chromosomes are heteromorphic with U larger than V, and are frequently both larger than the autosomes. There is variation even within this system, including UU/V and U/VV chromosome arrangements. In some bryophytes, microchromosomes have been found to co-occur with sex chromosomes and likely impact sex determination.[19]

Gymnosperms

Dioecy is common among gymnosperms, found in an estimated 36% of species. However, heteromorphic sex chromosomes are relatively rare, with only 5 species known as of 2014. Five of these use an XY system, and one (Ginkgo biloba) uses a WZ system. Some gymnosperms, such as Johann’s Pine (Pinus johannis), have homomorphic sex chromosomes that are almost indistinguishable through karyotyping.[18]

Angiosperms

Cosexual angiosperms with either monoecious or hermaphroditic flowers do not have sex chromosomes. Angiosperms with separate sexes (dioecious) may use sex chromosomes or environmental flowers for sex determination. Cytogenetic data from about 100 angiosperm species showed heteromorphic sex chromosomes in approximately half, mostly taking the form of XY sex-determination systems. Their Y is typically larger, unlike in humans; however there is diversity among angiosperms. In the Poplar genus (Populus) some species have male heterogamety while others have female heterogamety.[17] Sex chromosomes have arisen independently multiple times in angiosperms, from the monoecious ancestral condition. The move from a monoecious to dioecious system requires both male and female sterility mutations to be present in the population. Male sterility likely arises first as an adaptation to prevent selfing. Once male sterility has reached a certain prevalence, then female sterility may have a chance to arise and spread.[15]

In the domesticated papaya (Carica papaya), three sex chromosomes are present, denoted as X, Y and Yh. This corresponds with three sexes: females with XX chromosomes, males with XY, and hermaphrodites with XYh . The hermaphrodite sex is estimated to have arisen only 4000 years ago, post-domestication of the plant. The genetic architecture suggests that either the Y chromosome has an X-inactivating gene, or that the Yh chromosome has an X-activating gene.[20]

Medical applications

Allosomes not only carry the genes that determine male and female traits, but also those for some other characteristics as well. Genes that are carried by either sex chromosome are said to be sex linked. Sex linked diseases are passed down through families through one of the X or Y chromosomes. Since usually men inherit Y chromosomes, they are the only ones to inherit Y-linked traits. Men and women can get the X-linked ones since both inherit X chromosomes.[21]

An allele is either said to be dominant or recessive. Dominant inheritance occurs when an abnormal gene from one parent causes disease even though the matching gene from the other parent is normal. The abnormal allele dominates. Recessive inheritance is when both matching genes must be abnormal to cause disease. If only one gene in the pair is abnormal, the disease does not occur, or is mild. Someone who has one abnormal gene (but no symptoms) is called a carrier. A carrier can pass this abnormal gene to his or her children.[22] X chromosome carry about 1500 genes, more than any other chromosome in the human body. Most of them code for something other than female anatomical traits. Many of the non-sex determining X-linked genes are responsible for abnormal conditions. The Y chromosome carries about 78 genes. Most of the Y chromosome genes are involved with essential cell house-keeping activities and sperm production. Only one of the Y chromosome genes, the SRY gene, is responsible for male anatomical traits. When any of the 9 genes involved in sperm production are missing or defective the result is usually very low sperm counts and infertility.[23] Examples of mutations on the X chromosome include more common diseases such as color blindness, hemophilia, and fragile-X syndrome.

  • Color blindness or color vision deficiency is the inability or decreased ability to see color, or perceive color differences, under normal lighting conditions. Color blindness affects many individuals in the population. There is no actual blindness, but there is a deficiency of color vision. The most usual cause is a fault in the development of one or more sets of retinal cones that perceive color in light and transmit that information to the optic nerve. This type of color blindness is usually a sex-linked condition. The genes that produce photopigments are carried on the X chromosome; if some of these genes are missing or damaged, color blindness will be expressed in males with a higher probability than in females because males only have one X chromosome.
  • Hemophilia refers to a group of bleeding disorders in which it takes a long time for the blood to clot. This is referred to as X-Linked recessive.[24] Hemophilia is much more common in males than females because males are hemizygous. They only have one copy of the gene in question and therefore express the trait when they inherit one mutant allele. In contrast, a female must inherit two mutant alleles, a less frequent event since the mutant allele is rare in the population. X-linked traits are maternally inherited from carrier mothers or from an affected father. Each son born to a carrier mother has a 50% probability of inheriting the X-chromosome carrying the mutant allele.
    • Queen Victoria was a carrier of the gene for hemophilia. She passed on the harmful allele to one of her four sons and at least two of her five daughters. Her son Leopold had the disease and died at age 30. As a result of marrying into other European royal families, the princesses Alice and Beatrice spread hemophilia to Russia, Germany, and Spain. By the early 20th century, ten of Victoria's descendants had hemophilia. All of them were men, as expected.[21]
  • Fragile X syndrome is a genetic condition involving changes in part of the X chromosome. It is the most common form of inherited intellectual disability (mental retardation) in males. It is caused by a change in a gene called FMR1. A small part of the gene code is repeated on a fragile area of the X chromosome. The more repeats, the more likely there is to be a problem. Males and females can both be affected, but because males have only one X chromosome, a single fragile X is likely to affect them more. Most fragile-X males have large testes, big ears, narrow faces, and sensory processing disorders that result in learning disabilities.[25]

Other complications include:

  • 46,XX testicular disorder of sex development, also called XX male syndrome, is a condition in which individuals with two X chromosomes in each cell, the pattern normally found in females, have a male appearance. People with this disorder have male external genitalia. In most people with 46,XX testicular disorder of sex development, the condition results from an abnormal exchange of genetic material between chromosomes (translocation). This exchange occurs as a random event during the formation of sperm cells in the affected person's father. The SRY gene (which is on the Y chromosome) is misplaced in this disorder, almost always onto an X chromosome. Anyone with an X chromosome that carries the SRY gene will develop male characteristics despite not having a Y chromosome.[26]

See

References

  1. "Allosome - Biology-Online Dictionary". www.biology-online.org. Retrieved 2018-02-22.
  2. "the definition of allosome". Dictionary.com. Retrieved 2018-02-22.
  3. "Medical Definition of IDIOCHROMOSOME". i.word.com. Retrieved 2018-02-22.
  4. Brush, Stephen G. (1978). "Nettie M. Stevens and the Discovery of Sex Determination by Chromosomes". Isis. 69 (2): 163–172. doi:10.1086/352001. JSTOR 230427. PMID 389882.
  5. How many chromosomes do people have? - Genetics Home Reference
  6. Brockdorff N (November 2017). "Polycomb complexes in X chromosome inactivation". Philos. Trans. R. Soc. Lond., B, Biol. Sci. 372 (1733): 20170021. doi:10.1098/rstb.2017.0021. PMC 5627167. PMID 28947664.
  7. Kučinskas, Laimutis; Just, Walter (2005). "Human male sex determination and sexual differentiation: Pathways, molecular interactions and genetic disorders". Medicina. 41 (8): 633–40. PMID 16160410.
  8. Chandra, H. Sharat (1985). "Is Human X Chromosome Inactivation a Sex-Determining Device?". Proceedings of the National Academy of Sciences of the United States of America. 82 (20): 6947–6949. Bibcode:1985PNAS...82.6947C. doi:10.1073/pnas.82.20.6947. ISSN 0027-8424. JSTOR 26738. PMC 391286. PMID 3863136.
  9. "X-inactivation". Khan Academy. Retrieved 2019-10-24.
  10. "Genetic Mechanisms of Sex Determination | Learn Science at Scitable". www.nature.com. Retrieved 2019-10-24.
  11. Hunter, R. H. F. (March 1995). "Mechanisms of sex determination". Sex Determination, Differentiation and Intersexuality in Placental Mammals. Sex Determination, Differentiation and Intersexuality in Placental Mammals. pp. 22–68. doi:10.1017/CBO9780511565274.003. ISBN 9780521462181. Retrieved 2019-11-04.
  12. Nakamura, Masahisa (2009-05-01). "Sex determination in amphibians". Seminars in Cell & Developmental Biology. Environmental Regulation of Sex Dtermination in Vertebrates. 20 (3): 271–282. doi:10.1016/j.semcdb.2008.10.003. ISSN 1084-9521. PMID 18996493.
  13. Devlin, Robert H.; Nagahama, Yoshitaka (2002-06-21). "Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences". Aquaculture. Sex determination and sex differentation in fish. 208 (3): 191–364. doi:10.1016/S0044-8486(02)00057-1. ISSN 0044-8486.
  14. Sex determination in plants. Ainsworth, C. C. (Charles Colin), 1954-. Oxford, UK: BIOS Scientific Publishers. 1999. ISBN 0-585-40066-0. OCLC 50174640.CS1 maint: others (link)
  15. Pannell, John R. (March 2017). "Plant Sex Determination". Current Biology. 27 (5): R191–R197. doi:10.1016/j.cub.2017.01.052. PMID 28267976.
  16. Sun, Yu; Svedberg, Jesper; Hiltunen, Markus; Corcoran, Pádraic; Johannesson, Hanna (December 2017). "Large-scale suppression of recombination predates genomic rearrangements in Neurospora tetrasperma". Nature Communications. 8 (1): 1140. Bibcode:2017NatCo...8.1140S. doi:10.1038/s41467-017-01317-6. ISSN 2041-1723. PMC 5658415. PMID 29074958.
  17. Charlesworth, Deborah (2016-04-29). "Plant Sex Chromosomes". Annual Review of Plant Biology. 67 (1): 397–420. doi:10.1146/annurev-arplant-043015-111911. ISSN 1543-5008. PMID 26653795.
  18. Kumar, Sushil; Kumari, Renu; Sharma, Vishakha (April 2014). "Genetics of dioecy and causal sex chromosomes in plants". Journal of Genetics. 93 (1): 241–277. doi:10.1007/s12041-014-0326-7. ISSN 0022-1333. PMID 24840848.
  19. Renner, Susanne S.; Heinrichs, Jochen; Sousa, Aretuza (July 2017). "The sex chromosomes of bryophytes: Recent insights, open questions, and reinvestigations of Frullania dilatata and Plagiochila asplenioides: The sex chromosomes of bryophytes". Journal of Systematics and Evolution. 55 (4): 333–339. doi:10.1111/jse.12266.
  20. VanBuren, Robert; Zeng, Fanchang; Chen, Cuixia; Zhang, Jisen; Wai, Ching Man; Han, Jennifer; Aryal, Rishi; Gschwend, Andrea R.; Wang, Jianping; Na, Jong-Kuk; Huang, Lixian (April 2015). "Origin and domestication of papaya Y h chromosome". Genome Research. 25 (4): 524–533. doi:10.1101/gr.183905.114. ISSN 1088-9051. PMC 4381524. PMID 25762551.
  21. Biological Basis of Heredity: Sex Linked Genes
  22. Sex-linked recessive - National Library of Medicine - PubMed Health
  23. Sex-Linked Traits | Heredity and genetics | Khan Academy
  24. Hemophilia - National Library of Medicine - PubMed Health
  25. Fragile X Syndrome - Symptoms, Diagnosis, Treatment of Fragile X Syndrome - NY Times Health Information
  26. 46,XX testicular disorder of sex development - Genetics Home Reference
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.