Decomposer

Decomposers are organisms that break down dead or decaying organisms, they carry out decomposition, a process possible by only certain kingdoms, such as fungi.[1] Like herbivores and predators, decomposers are heterotrophic, meaning that they use organic substrates to get their energy, carbon and nutrients for growth and development. While the terms decomposer and detritivore are often interchangeably used, detritivores ingest and digest dead matter internally, while decomposers directly absorb nutrients through external chemical and biological processes.[2] Thus, invertebrates such as earthworms, woodlice, and sea cucumbers are technically detritivores, not decomposers, since they must ingest nutrients - they are unable to absorb them externally.[3]

The fungi on this tree are decomposers.

Fungi

This decomposer is thought as a primary source of litter and or waste in the ecosystems. [4]Fungi has been known to produce a selection of prescription drugs along with many other antibiotics. [5]Unlike bacteria, which are unicellular organisms and are decomposers as well, most saprotrophic fungi grow as a branching network of hyphae. While bacteria are restricted to growing and feeding on the exposed surfaces of organic matter, fungi can use their hyphae to penetrate larger pieces of organic matter, below the surface. Additionally, only wood-decay fungi have evolved the enzymes necessary to decompose lignin, a chemically complex substance found in wood.[6] These two factors make fungi the primary decomposers in forests, where litter has high concentrations of lignin and often occurs in large pieces. Fungi decompose organic matter by releasing enzymes to break down the decaying material, after which they absorb the nutrients in the decaying material.[7] Hyphae used to break down matter and absorb nutrients are also used in reproduction. When two compatible fungi hyphae grow close to each other, they will then fuse together for reproduction and form another fungus.[7]

See also

References

  1. "NOAA. ACE Basin National Estuarine Research Reserve: Decomposers". Archived from the original on 2014-10-09. Retrieved 2012-09-17.
  2. Trophic level. Eds. M.McGinley & C.J.cleveland. Encyclopedia of Earth. National Council for Science and the Environment. Washington DC
  3. "Decomposers". citadel.sjfc.edu. Retrieved 2019-05-09.
  4. "10 Facts about Decomposition". Fact File. Retrieved 2019-05-09.
  5. "Introduction to the Fungi".
  6. Blanchette, Robert (September 1991). "Delignification by Wood-Decay Fungi". Annual Review of Phytopathology. 29: 281–403. doi:10.1146/annurev.py.29.090191.002121.
  7. Waggoner, Ben; Speer, Brian. "Fungi: Life History and Ecology". Introduction to the Funge=24 January 2014.

Further reading

  • Bear, MH; Hendrix, PF; Cheng, W (1992). "Microbial and faunal interactions and effects on litter nitrogen and decomposition in agroecosystems". Ecological Monographs. 62 (4): 569–591. doi:10.2307/2937317. JSTOR 2937317. S2CID 86031411.
  • Hunt HW, Coleman DC, Ingham ER, Ingham RE, Elliot ET, Moore JC, Rose SL, Reid CPP, Morley CR (1987) "The detrital food web in a shortgrass prairie". Biology and Fertility of Soils 3: 57-68
  • Smith TM, Smith RL (2006) Elements of Ecology. Sixth edition. Benjamin Cummings, San Francisco, CA.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.