Unbibium

Unbibium,  122Ubb
General properties
Alternative names element 122, eka-thorium
Unbibium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Ununennium Unbinilium Unbiunium
Unquadquadium Unquadpentium Unquadhexium Unquadseptium Unquadoctium Unquadennium Unpentnilium Unpentunium Unpentbium Unpenttrium Unpentquadium Unpentpentium Unpenthexium Unpentseptium Unpentoctium Unpentennium Unhexnilium Unhexunium Unhexbium Unhextrium Unhexquadium Unhexpentium Unhexhexium Unhexseptium Unhexoctium Unhexennium Unseptnilium Unseptunium Unseptbium
Unbibium Unbitrium Unbiquadium Unbipentium Unbihexium Unbiseptium Unbioctium Unbiennium Untrinilium Untriunium Untribium Untritrium Untriquadium Untripentium Untrihexium Untriseptium Untrioctium Untriennium Unquadnilium Unquadunium Unquadbium Unquadtrium


Ubb

unbiuniumunbibiumunbitrium
Atomic number (Z) 122
Group n/a
Period period 8
Block d-block
Element category   unknown chemical properties, but probably a superactinide
Electron configuration [Og] 7d1 8s2 8p1 (predicted)[1]
Electrons per shell
2, 8, 18, 32, 32, 18, 9, 3
(predicted)
Physical properties
unknown
Atomic properties
Oxidation states 4 (predicted)[2]
Other properties
CAS Number 54576-73-7
History
Naming IUPAC systematic element name
Main isotopes of unbibium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct

Unbibium /nˈbɪbiəm/,[3] also known as eka-thorium or simply element 122, is the currently hypothetical chemical element in the periodic table with the placeholder symbol of Ubb and atomic number 122. Unbibium and Ubb are the temporary systematic IUPAC name and symbol respectively, until a permanent name is decided upon. In the periodic table of the elements, it is expected to follow unbiunium as the second element of the superactinides, or the g-block and the fourth element of the 8th period. It has attracted recent attention, for similarly to unbiunium, it is expected to fall within the range of the island of stability.

Despite many attempts, unbibium has not yet been synthesized, and therefore no natural isotopes have been found to exist. It is currently predicted that it has a g-orbital, the second element of which to have such besides unbiunium, which also has yet to be synthesized. It will most likely require nuclear fission to be produced artificially. In 2008, it was claimed to have been discovered in natural thorium samples[4] but that claim has now been dismissed by recent repetitions of the experiment using more accurate techniques.

History

Neutron evaporation

The first attempt to synthesize unbibium was performed in 1972 by Flerov et al. at the Joint Institute for Nuclear Research (JINR), using the hot fusion reaction:[3]

238
92
U
+ 66
30
Zn
304
122
Ubb
* → no atoms

No atoms were detected and a yield limit of 5 mb (5,000,000,000 pb) was measured. Current results (see flerovium) have shown that the sensitivity of this experiment was too low by at least 6 orders of magnitude.

In 2000, the Gesellschaft für Schwerionenforschung (GSI) Hemholtz Center for Heavy Ion Research performed a very similar experiment with much higher sensitivity:[3]

238
92
U
+ 70
30
Zn
308
122
Ubb
* → no atoms

These results indicate that the synthesis of such heavier elements remains a significant challenge and further improvements of beam intensity and experimental efficiency is required. The sensitivity should be increased to 1 fb in the future for more quality results.

Another unsuccessful attempt to synthesize unbibium was carried out in 1978 at the GSI Helmholtz Center, where a natural erbium target was bombarded with xenon-136 ions:[3]

nat
68
Er
+ 136
54
Xe
298,300,302,303,304,306
Ubb
* → no atoms

These two attempts in the 1970s to synthesize unbibium were both propelled by the research investigating whether superheavy elements could potentially be naturally occurring.[3]

Compound nucleus fission

Several experiments have been performed between 2000–2004 at the Flerov laboratory of Nuclear Reactions studying the fission characteristics of the compound nucleus 306Ubb. Two nuclear reactions have been used, namely 248Cm + 58Fe and 242Pu + 64Ni.[3] The results have revealed how nuclei such as this fission predominantly by expelling closed shell nuclei such as 132Sn (Z=50, N=82). It was also found that the yield for the fusion-fission pathway was similar between 48Ca and 58Fe projectiles, indicating a possible future use of 58Fe projectiles in superheavy element formation.[5]

Claimed discovery as a naturally occurring element

On April 24, 2008, a group led by Amnon Marinov at the Hebrew University of Jerusalem claimed to have found single atoms of unbibium-292 in naturally occurring thorium deposits at an abundance of between 10−11 and 10−12, relative to thorium.[4] The claim of Marinov et al. was criticized by a part of the scientific community, and Marinov says he has submitted the article to the journals Nature and Nature Physics but both turned it down without sending it for peer review.[6] The unbibium-292 atoms were claimed to be superdeformed or hyperdeformed isomers, with a half-life of at least 100 million years.[3]

A criticism of the technique, previously used in purportedly identifying lighter thorium isotopes by mass spectrometry,[7] was published in Physical Review C in 2008.[8] A rebuttal by the Marinov group was published in Physical Review C after the published comment.[9]

A repeat of the thorium-experiment using the superior method of Accelerator Mass Spectrometry (AMS) failed to confirm the results, despite a 100-fold better sensitivity.[10] This result throws considerable doubt on the results of the Marinov collaboration with regards to their claims of long-lived isotopes of thorium,[7] roentgenium[11] and unbibium.[4] It is still possible that traces of unbibium might only exist in some thorium samples, although this is very unlikely.[3]

Naming

Using Mendeleev's nomenclature for unnamed and undiscovered elements, unbihexium should instead be known as eka-thorium or dvi-cerium. After the recommendations of the IUPAC in 1979, the element has since been largely referred to as unbibium with the atomic symbol of (Ubb),[12] as its temporary name until the element is officially discovered and synthesized, and a permanent name is decided on. Scientists largely ignore this naming convention, and instead simply refer to unbibium as "Element 122" with the symbol of (122), or sometimes even E122 or 122.[13]

Predicted properties

Nuclear stability and isotopes

A 3D graph of stability of elements vs. number of protons Z and neutrons N, showing a "mountain chain" running diagonally through the graph from the low to high numbers, as well as an "island of stability" at high N and Z.
Unbibium is predicted to lie within the "island of stability".[3]

The stability of nuclei decreases greatly with the increase in atomic number after plutonium, the heaviest primordial element, so that all isotopes with an atomic number above 101 decay radioactively with a half-life under a day, with an exception of dubnium-268. No elements with atomic numbers above 82 (after lead) have stable isotopes.[14] Nevertheless, because of reasons not very well understood yet, there is a slight increased nuclear stability around atomic numbers 110114, which leads to the appearance of what is known in nuclear physics as the "island of stability". This concept, proposed by University of California professor Glenn Seaborg, explains why superheavy elements last longer than predicted.[15] In this region of the periodic table, N=184 and N=196 have been suggested as closed neutron shells. Therefore the isotopes of most interest are 306Ubb and 318Ubb, for these might be considerably longer-lived than other isotopes. Element 122 is predicted to lie within the island of stability, with element 126 predicted to lie near its peak.[3]

Atomic and physical

Unbibium is predicted to belong to a new block of valence g-electron atoms, although the g-block's position left of the f-block is speculative.[16] It has been predicted by Ephraim Eliav et al. that unbibium will have the electron configuration [Og] 8s27d18p1,[17] although there may be a sort of smearing of the energies within 5g, 6f, 7d and 8p orbitals.[16]

Chemical

If group reactivity is followed, unbibium should be a reactive metal, more reactive than cerium or thorium. Unbibium would most likely form the dioxide, UbbO2, and trihalides, such as UbbF3 and UbbCl3. The predicted oxidation states are III and IV (and perhaps II). Being a congener of thorium, it should have similar chemistry to thorium, with multiple oxidation states.[3]

See also

References

  1. Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. ISBN 1-4020-3555-1.
  2. Pyykkö, Pekka (2011). "A suggested periodic table up to Z≤ 172, based on Dirac–Fock calculations on atoms and ions". Physical Chemistry Chemical Physics. 13 (1): 161–8. Bibcode:2011PCCP...13..161P. doi:10.1039/c0cp01575j. PMID 20967377.
  3. 1 2 3 4 5 6 7 8 9 10 11 Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New ed.). New York, NY: Oxford University Press. p. 588. ISBN 978-0-19-960563-7.
  4. 1 2 3 Marinov, A.; Rodushkin, I.; Kolb, D.; Pape, A.; Kashiv, Y.; Brandt, R.; Gentry, R. V.; Miller, H. W. (2008). "Evidence for a long-lived superheavy nucleus with atomic mass number A=292 and atomic number Z=~122 in natural Th". International Journal of Modern Physics E. 19: 131. arXiv:0804.3869. Bibcode:2010IJMPE..19..131M. doi:10.1142/S0218301310014662.
  5. see Flerov lab annual reports 2000–2004 inclusive http://www1.jinr.ru/Reports/Reports_eng_arh.html
  6. Royal Society of Chemistry, "Heaviest element claim criticised", Chemical World.
  7. 1 2 Marinov, A.; Rodushkin, I.; Kashiv, Y.; Halicz, L.; Segal, I.; Pape, A.; Gentry, R. V.; Miller, H. W.; Kolb, D.; Brandt, R. (2007). "Existence of long-lived isomeric states in naturally-occurring neutron-deficient Th isotopes". Phys. Rev. C. 76 (2): 021303(R). arXiv:nucl-ex/0605008. Bibcode:2007PhRvC..76b1303M. doi:10.1103/PhysRevC.76.021303.
  8. R. C. Barber; J. R. De Laeter (2009). "Comment on "Existence of long-lived isomeric states in naturally-occurring neutron-deficient Th isotopes"". Phys. Rev. C. 79 (4): 049801. Bibcode:2009PhRvC..79d9801B. doi:10.1103/PhysRevC.79.049801.
  9. A. Marinov; I. Rodushkin; Y. Kashiv; L. Halicz; I. Segal; A. Pape; R. V. Gentry; H. W. Miller; D. Kolb; R. Brandt (2009). "Reply to "Comment on 'Existence of long-lived isomeric states in naturally-occurring neutron-deficient Th isotopes'"". Phys. Rev. C. 79 (4): 049802. Bibcode:2009PhRvC..79d9802M. doi:10.1103/PhysRevC.79.049802.
  10. J. Lachner; I. Dillmann; T. Faestermann; G. Korschinek; M. Poutivtsev; G. Rugel (2008). "Search for long-lived isomeric states in neutron-deficient thorium isotopes". Phys. Rev. C. 78 (6): 064313. arXiv:0907.0126. Bibcode:2008PhRvC..78f4313L. doi:10.1103/PhysRevC.78.064313.
  11. Marinov, A.; Rodushkin, I.; Pape, A.; Kashiv, Y.; Kolb, D.; Brandt, R.; Gentry, R. V.; Miller, H. W.; Halicz, L.; Segal, I. (2009). "Existence of Long-Lived Isotopes of a Superheavy Element in Natural Au" (PDF). International Journal of Modern Physics E. World Scientific Publishing Company. 18 (3): 621–629. arXiv:nucl-ex/0702051. Bibcode:2009IJMPE..18..621M. doi:10.1142/S021830130901280X. Retrieved February 12, 2012.
  12. Chatt, J. (1979). "Recommendations for the Naming of Elements of Atomic Numbers Greater than 100". Pure Appl. Chem. 51 (2): 381–384. doi:10.1351/pac197951020381.
  13. Haire, Richard G. (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. p. 1724. ISBN 1-4020-3555-1.
  14. Marcillac, Pierre de; Noël Coron; Gérard Dambier; Jacques Leblanc; Jean-Pierre Moalic (April 2003). "Experimental detection of α-particles from the radioactive decay of natural bismuth". Nature. 422 (6934): 876–878. Bibcode:2003Natur.422..876D. doi:10.1038/nature01541. PMID 12712201.
  15. Considine, Glenn D.; Kulik, Peter H. (2002). Van Nostrand's scientific encyclopedia (9 ed.). Wiley-Interscience. ISBN 978-0-471-33230-5. OCLC 223349096.
  16. 1 2 Seaborg (c. 2006). "transuranium element (chemical element)". Encyclopædia Britannica. Retrieved 2010-03-16.
  17. Hoffman, Darleane C.; Lee, Diana M.; Pershina, Valeria (2006). "Transactinides and the future elements". In Morss; Edelstein, Norman M.; Fuger, Jean. The Chemistry of the Actinide and Transactinide Elements (3rd ed.). Dordrecht, The Netherlands: Springer Science+Business Media. p. 1659. ISBN 1-4020-3555-1.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.