Triakis tetrahedron

Triakis tetrahedron

(Click here for rotating model)
TypeCatalan solid
Coxeter diagram
Conway notationkT
Face typeV3.6.6

isosceles triangle
Faces12
Edges18
Vertices8
Vertices by type4{3}+4{6}
Symmetry groupTd, A3, [3,3], (*332)
Rotation groupT, [3,3]+, (332)
Dihedral angle129°31′16″
arccos(−7/11)
Propertiesconvex, face-transitive

Truncated tetrahedron
(dual polyhedron)

Net

In geometry, a triakis tetrahedron (or kistetrahedron[1]) is an Archimedean dual solid, or a Catalan solid. Its dual is the truncated tetrahedron.

It can be seen as a tetrahedron with triangular pyramids added to each face; that is, it is the Kleetope of the tetrahedron. It is very similar to the net for the 5-cell, as the net for a tetrahedron is a triangle with other triangles added to each edge, the net for the 5-cell a tetrahedron with pyramids attached to each face. This interpretation is expressed in the name.

The length of the shorter edges is 3/5 that of the longer edges[2]. If the triakis tetrahedron has shorter edge length 1, it has area 5/311 and volume 25/362.

Tetartoid symmetry

The triakis tetrahedron can be made as a degenerate limit of a tetaroid:

Example tetartoid variations

Orthogonal projections

Orthogonal projection
Centered by Edge normal Face normal Face/vertex Edge
Triakis
tetrahedron
(Dual)
Truncated
tetrahedron
Projective
symmetry
[1] [1] [3] [4]

Variations

A triakis tetrahedron with equilateral triangle faces represents a net of the four-dimensional regular polytope known as the 5-cell.

If the triangles are right-angled isosceles, the faces will be coplanar and form a cubic volume. This can be seen by adding the 6 edges of tetrahedron inside of a cube.

Stellations

This chiral figure is one of thirteen stellations allowed by Miller's rules.

Spherical triakis tetrahedron

The triakis tetrahedron is a part of a sequence of polyhedra and tilings, extending into the hyperbolic plane. These face-transitive figures have (*n32) reflectional symmetry.

See also

References

  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X. (Section 3-9)
  • Wenninger, Magnus (1983), Dual Models, Cambridge University Press, doi:10.1017/CBO9780511569371, ISBN 978-0-521-54325-5, MR 0730208 (The thirteen semiregular convex polyhedra and their duals, Page 14, Triakistetrahedron)
  • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, page 284, Triakis tetrahedron )


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.