Deltoidal icositetrahedron

Deltoidal icositetrahedron

Animated
TypeCatalan
Conway notationoC or deC
Coxeter diagram
Face polygon
kite
Faces24
Edges48
Vertices26 = 6 + 8 + 12
Face configurationV3.4.4.4
Symmetry groupOh, BC3, [4,3], *432
Rotation groupO, [4,3]+, (432)
Dihedral angle138°07′05″
arccos(−7 + 42/17)
Dual polyhedronrhombicuboctahedron
Propertiesconvex, face-transitive

Net

In geometry, a deltoidal icositetrahedron (also a trapezoidal icositetrahedron, tetragonal icosikaitetrahedron,[1], tetragonal trisoctahedron[2] and strombic icositetrahedron) is a Catalan solid. Its dual polyhedron is the rhombicuboctahedron.

Dimensions

The 24 faces are kites. The short and long edges of each kite are in the ratio 1:(2  1/2) ≈ 1:1.292893...

If its smallest edges have length a, its surface area and volume are

Occurrences in nature and culture

The deltoidal icositetrahedron is a crystal habit often formed by the mineral analcime and occasionally garnet. The shape is often called a trapezohedron in mineral contexts, although in solid geometry that name has another meaning.

Orthogonal projections

The deltoidal icositetrahedron has three symmetry positions, all centered on vertices:

Orthogonal projections
Projective
symmetry
[2] [4] [6]
Image
Dual
image

The great triakis octahedron is a stellation of the deltoidal icositetrahedron.

Dyakis dodecahedron

The deltoidal icositetrahedron is topologically equivalent to a cube whose faces are divided in quadrants. It can also be projected onto a regular octahedron, with kite faces, or more general quadrilaterals with pyritohedral symmetry. In Conway polyhedron notation, they represent an ortho operation to a cube or octahedron.

In crystallography a rotational variation is called a dyakis dodecahedron[3][4] or diploid.[5]

Octahedral, Oh, order 24 Pyritohedral, Th, order 12
Spherical deltoidal icositetrahedron

The deltoidal icositetrahedron is one of a family of duals to the uniform polyhedra related to the cube and regular octahedron.

When projected onto a sphere (see right), it can be seen that the edges make up the edges of an octahedron and cube arranged in their dual positions.

This polyhedron is topologically related as a part of sequence of deltoidal polyhedra with face figure (V3.4.n.4), and continues as tilings of the hyperbolic plane. These face-transitive figures have (*n32) reflectional symmetry.

*n42 symmetry mutation of dual expanded tilings: V3.4.n.4
Symmetry
*n32
[n,3]
Spherical Euclid. Compact hyperb. Paraco.
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*32
[,3]
Figure
Config.

V3.4.2.4

V3.4.3.4

V3.4.4.4

V3.4.5.4

V3.4.6.4

V3.4.7.4

V3.4.8.4

V3.4..4

See also

References

  • Williams, Robert (1979). The Geometrical Foundation of Natural Structure: A Source Book of Design. Dover Publications, Inc. ISBN 0-486-23729-X. (Section 3-9)
  • Wenninger, Magnus (1983), Dual Models, Cambridge University Press, doi:10.1017/CBO9780511569371, ISBN 978-0-521-54325-5, MR 0730208 (The thirteen semiregular convex polyhedra and their duals, Page 23, Deltoidal icositetrahedron)
  • The Symmetries of Things 2008, John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, ISBN 978-1-56881-220-5 (Chapter 21, Naming the Archimedean and Catalan polyhedra and tilings, page 286, tetragonal icosikaitetrahedron)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.