NOAA-5

NOAA-5
Mission type Weather
Operator NOAA / NASA
COSPAR ID 1976-077A[1]
SATCAT no. 9057[2]
Mission duration 2 years and 11 months
Spacecraft properties
Manufacturer RCA Astrospace
Launch mass 336 kilograms (741 lb)
Start of mission
Launch date July 29, 1976, 17:07 (1976-07-29UTC17:07Z) UTC[3]
Rocket Delta-2310 605/D126
Launch site Vandenberg SLC-2W
End of mission
Disposal Decommissioned
Deactivated July 16, 1979 (1979-07-17)[4]
Orbital parameters
Reference system Geocentric
Regime Low Earth
Sun-synchronous
Semi-major axis 7,894 kilometers (4,905 mi)
Eccentricity 0.009562
Perigee 1,515.7 kilometers (941.8 mi)
Apogee 1,530.8 kilometers (951.2 mi)
Inclination 101.8785°
Period 116.2 minutes
RAAN 155.0105 degrees
Argument of perigee 309.9627 degrees
Mean anomaly 161.3050 degrees
Mean motion 12.3775781
Epoch June 28, 2018[2]
Revolution no. 89456
Instruments
SPM, SR, VHRR, VTPR
ITOS

NOAA-5, also known as ITOS-H was a weather satellite operated by the National Oceanic and Atmospheric Administration (NOAA). It was part of a series of satellites called ITOS, or improved TIROS, being the last of the series.[5] NOAA-5 was launched on a Delta rocket on July 29, 1976.[6]

Mission

NOAA-5 was one in a series of improved TIROS-M type satellites launched with new meteorological sensors on board to expand the operational capacity of the ITOS (NOAA) system. The primary objectives of the NOAA-5 meteorological satellite were to provide global daytime and nighttime direct readout cloud cover data on a daily basis. The sun-synchronous spacecraft was capable of supplying global atmospheric temperature soundings and very high resolution infrared cloudcover data of selected areas in either a direct readout or a tape recorder mode. A secondary objective was to obtain global solar proton density data on a routine daily basis. The primary sensors consisted of a very high resolution radiometer (VHRR), a vertical temperature profile radiometer (VTPR), and a scanning radiometer (SR). The VHRR, VTPR, and SR were mounted on the satellite baseplate with their optical axes directed vertically earthward. The nearly cubical spacecraft measured 1 by 1 by 1.2 meters (3.3 ft × 3.3 ft × 3.9 ft). The satellite was equipped with three curved solar panels that were folded during launch and deployed after orbit was achieved. Each panel measured over 4.2 meters (14 ft) in length when unfolded and was covered with 3,420 solar cells, each measuring 2 by 2 centimeters (0.79 in × 0.79 in).

The ITOS dynamics and attitude control system maintained desired spacecraft orientation through gyroscopic principles incorporated into the satellite design. Earth orientation of the satellite body was maintained by taking advantage of the precession induced from a momentum flywheel so that the satellite body precession rate of one revolution per orbit provided the desired "earth looking" attitude. Minor adjustments in attitude and orientation were made by means of magnetic coils and by varying the speed of the momentum flywheel. The satellite was placed in a sun-synchronous orbit with equatorial crossing of the ascending node near 08:30 A.M. local time.[1]

See also

References

  1. 1 2 NASA, Goddard Space Flight Center. "NASA/NSSDC NOAA-5 spacecraft details". NSSDCA. Retrieved June 7, 2018. This article incorporates text from this source, which is in the public domain.
  2. 1 2 "Live Real Time Satellite Tracking and Predictions: NOAA-5 (ITOS-H)". n2yo.com. Retrieved June 7, 2018.
  3. McDowell, Jonathan. "Launch Log". Jonathan's Space Page. Retrieved June 7, 2018.
  4. "WMO OSCAR / Satellite:NOAA-5". World Meteorological Organization. Retrieved June 7, 2018.
  5. Wade, Mark. "ITOS". Encyclopedia Astronautica. Retrieved June 7, 2018.
  6. "The NOAA series". NASA Goddard Space Flight Center. Retrieved June 7, 2018.

Media related to Improved TIROS Operational System at Wikimedia Commons

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.