Standard electrode potential (data page)

The data values of standard electrode potentials are given in the table below, in volts relative to the standard hydrogen electrode, and are for the following conditions:

  • A temperature of 298.15 K (25.00 °C; 77.00 °F).
  • An effective concentration of 1 mol/L for each aqueous species or a species in a mercury amalgam (an alloy of mercury with another metal).
  • A partial pressure of 101.325 kPa (absolute) (1 atm, 1.01325 bar) for each gaseous reagent. This pressure is used because most literature data are still given for this value (1 atm) rather than for the current standard of 100 kPa (1 bar).
  • An activity of unity for each pure solid, pure liquid, or for water (solvent). The relation in electrode potential of metals in saltwater (as electrolyte) is given in the galvanic series.
  • Although many of the half cells are written for multiple-electron transfers, the tabulated potentials are for a single-electron transfer. All of the reactions should be divided by the stoichiometric coefficient for the electron to get the corresponding corrected reaction equation. For example, the equation Fe2++2e Fe(s) (-0.44 Volt) means that it requires 2 × 0.44 ev=0.88 eV of energy to be absorbed (hence the minus sign) in order to create one neutral atom of Fe(s) from one Fe2+ ion and two electrons, or 0.44 eV per electron, which is 0.44 Joules per coulomb of electrons, which is 0.44 Volts.
where F is the Faraday constant. For example, in the equation Fe2++2e Fe(s) (-0.44 Volt) , the Gibbs energy required to create one neutral atom of Fe(s) from one Fe2+ ion and two electrons is 2 × 0.44 ev=0.88 ev, or 84895 J/mol of electrons, which is just the Gibbs energy of formation of an Fe2+ ion, since the energies of formation of e and Fe(s) are both zero.
The Nernst equation will then give potentials at concentrations, pressures, and temperatures other than standard.
  • Note that the table may lack consistency due to data from different sources. For example:
Cu+
+ eCu(s)(E
1
= +0.520 V)
Cu2++ 2 eCu(s)(E
2
= +0.337 V)
Cu2++ eCu+
(E
3
= +0.159 V)
Calculating the potential using Gibbs Free Energy (E
3
=2 E
2
-E
1
) gives the potential for E
3
as 0.154 V, not the experimental value of 0.159 V.

Legend: (s) solid; (l) liquid; (g) gas; (aq) aqueous (default for all charged species); (Hg) amalgam; bold water electrolysis equations.

Element Half-reaction (V)
Oxidant Reductant
&
Zz
Sr Sr+
+ e
Sr −4.101
Ca Ca+
+ e
Ca −3.8
Pr Pr3+
+ e
Pr2+
−3.1
N 3N2(g) + 2H+ + 2e 2HN
3
(aq)
−3.09
Li Li+ + e Li(s) −3.0401
N N
2
(g) + 4H
2
O
+ 2e
2NH
2
OH
(aq) + 2OH
−3.04
Cs Cs+
+ e
Cs(s) −3.026
Ca Ca(OH)
2
+ 2e
Ca + 2OH −3.02
Er Er3+
+ e
Er2+
−3.0
Ba Ba(OH)
2
+ 2e
Ba + 2OH −2.99
Rb Rb+ + e Rb(s) −2.98
K K+ + e K(s) −2.931
Ba Ba2+ + 2e Ba(s) −2.912
La La(OH)
3
(s) + 3e
La(s) + 3OH −2.90
Fr Fr+ + e Fr −2.9
Sr Sr2+ + 2e Sr(s) −2.899
Sr Sr(OH)
2
+ 2e
Sr + 2OH −2.88
Ca Ca2+ + 2e Ca(s) −2.868
Li Li+ + C6(s) + e LiC6(s) −2.84
Eu Eu2+ + 2e Eu(s) −2.812
Ra Ra2+ + 2e Ra(s) −2.8
Ho Ho3+
+ e
Ho2+ −2.8
Bk Bk3+
+ e
Bk2+ −2.8
Yb Yb2+ + 2e Yb −2.76
Na Na+ + e Na(s) −2.71
Mg Mg+ + e Mg −2.70
Nd Nd3+
+ e
Nd2+ −2.7
Mg Mg(OH)
2
+ 2e
Mg + 2OH −2.690
Sm Sm2+ + 2e Sm −2.68
Be Be
2
O2−
3
+ 3H
2
O
+ 4e
2 Be + 6OH −2.63
Pm Pm3+
+ e
Pm2+ −2.6
Dy Dy3+
+ e
Dy2+ −2.6
No No2+ + 2e No −2.50
Hf HfO(OH)
2
+ H
2
O
+ 4e
Hf + 4OH −2.50
Th Th(OH)
4
+ 4e
Th + 4OH −2.48
Md Md2+ + 2e Md −2.40
Tm Tm2+ + 2e Tm −2.4
La La3+
+ 3e
La(s) −2.379
Y Y3+
+ 3e
Y(s) −2.372
Mg Mg2+ + 2e Mg(s) −2.372
Zr ZrO(OH)2(s) + H
2
O
+ 4e
Zr(s) + 4OH −2.36
Pr Pr3+
+ 3e
Pr −2.353
Ce Ce3+
+ 3e
Ce −2.336
Er Er3+
+ 3e
Er −2.331
Ho Ho3+
+ 3e
Ho −2.33
Al H
2
AlO
3
+ H
2
O
+ 3e
Al + 4OH
Nd Nd3+
+ 3e
Nd −2.323
Tm Tm3+
+ 3e
Tm −2.319
Al Al(OH)
3
(s) + 3e
Al(s) + 3OH −2.31
Sm Sm3+
+ 3e
Sm −2.304
Fm Fm2+ + 2e Fm −2.30
Am Am3+
+ e
Am2+ −2.3
Dy Dy3+
+ 3e
Dy −2.295
Lu Lu3+
+ 3e
Lu −2.28
Tb Tb3+
+ 3e
Tb −2.28
Gd Gd3+
+ 3e
Gd −2.279
H H2 + 2e 2H
−2.23
Es Es2+ + 2e Es −2.23
Pm Pm2+ + 2e Pm −2.2
Tm Tm3+
+ e
Tm2+ −2.2
Dy Dy2+ + 2e Dy −2.2
Ac Ac3+
+ 3e
Ac −2.20
Yb Yb3+
+ 3e
Yb −2.19
Cf Cf2+ + 2e Cf −2.12
Nd Nd2+ + 2e Nd −2.1
Ho Ho2+ + 2e Ho −2.1
Sc Sc3+
+ 3e
Sc(s) −2.077
Al AlF3−
6
+ 3e
Al + 6F
−2.069
Am Am3+
+ 3e
Am −2.048
Cm Cm3+
+ 3e
Cm −2.04
Pu Pu3+
+ 3e
Pu −2.031
Pr Pr2+ + 2e Pr −2.0
Er Er2+ + 2e Er −2.0
Eu Eu3+
+ 3e
Eu −1.991
Lr Lr3+
+ 3e
Lr −1.96
Cf Cf3+
+ 3e
Cf −1.94
Es Es3+
+ 3e
Es −1.91
Pa Pa4+ + e Pa3+ −1.9
Am Am2+ + 2e Am −1.9
Th Th4+ + 4e Th −1.899
Fm Fm3+
+ 3e
Fm −1.89
Np Np3+
+ 3e
Np −1.856
Be Be2+ + 2e Be −1.847
P H
2
PO
2
+ e
P + 2OH −1.82
U U3+
+ 3e
U −1.798
Sr Sr2+ + 2e Sr(Hg) −1.793
B H
2
BO
3
+ H
2
O
+ 3e
B + 4OH −1.79
Th ThO
2
+ 4H+ + 4e
Th + 2H
2
O
−1.789
Hf HfO2+ + 2H+ + 4e Hf + H
2
O
−1.724
P HPO2−
3
+ 2H
2
O
+ 3e
P + 5OH −1.71
Si SiO2−
3
+ H
2
O
+ 4e
Si + 6OH −1.697
Al Al3+
+ 3e
Al(s) −1.662
Ti Ti2+ + 2e Ti(s) −1.63
Zr ZrO2(s) + 4H+ + 4e Zr(s) + 2H
2
O
−1.553
Zr Zr4+ + 4e Zr(s) −1.45
Ti Ti3+ + 3e Ti(s) −1.37
Ti TiO(s) + 2H+ + 2e Ti(s) + H
2
O
−1.31
Ti Ti
2
O
3
(s) + 2H+ + 2e
2TiO(s) + H
2
O
−1.23
Zn Zn(OH)2−
4
+ 2e
Zn(s) + 4OH −1.199
Mn Mn2+ + 2e Mn(s) −1.185
Fe Fe(CN)4−
6
+ 6H+ + 2 e
Fe(s) + 6HCN(aq) −1.16
Te Te(s) + 2e Te2− −1.143
V V2+ + 2e V(s) −1.13
Nb Nb3+
+ 3e
Nb(s) −1.099
Sn Sn(s) + 4H+ + 4e SnH
4
(g)
−1.07
Si SiO2(s) + 4H+ + 4e Si(s) + 2H
2
O
−0.91
B B(OH)
3
(aq) + 3H+ + 3e
B(s) + 3H
2
O
−0.89
Fe Fe(OH)2(s) + 2e Fe(s) + 2OH −0.89
Fe Fe
2
O
3
(s) + 3H
2
O
+ 2e
2Fe(OH)2(s) + 2OH −0.86
Ti TiO2+ + 2H+ + 4e Ti(s) + H
2
O
−0.93
H 2H
2
O
+ 2e
H2(g) + 2OH −0.8277
Bi Bi(s) + 3H+ + 3e BiH
3
−0.8
Zn Zn2+ + 2e Zn(Hg) −0.7628
Zn Zn2+ + 2e Zn(s) −0.7618
Ta [Ta
2
O
5
(s) + 10H+ + 10e
2Ta(s) + 5H
2
O
−0.75
Cr Cr3+
+ 3e
Cr(s) −0.74
Ag Ag
2
S
(s) + 2e
2Ag(s) + S2−
(aq)
−0.69
Au [Au(CN)
2
]
+ e
Au(s) + 2CN
−0.60
Ta Ta3+ + 3e Ta(s) −0.6
Pb PbO(s) + H
2
O
+ 2e
Pb(s) + 2OH −0.58
Ti 2TiO2(s) + 2H+ + 2e Ti
2
O
3
(s) + H
2
O
−0.56
Ga Ga3+
+ 3e
Ga(s) −0.53
U U4+ + e U3+ −0.52
P H
3
PO
2
(aq) + H+ + e
P(white)[note 1] + 2H
2
O
−0.508
P H
3
PO
3
(aq) + 2H+ + 2e
H
3
PO
2
(aq) + H
2
O
−0.499
P H
3
PO
3
(aq) + 3H+ + 3e
P(red)[note 1] + 3H
2
O
−0.454
Fe Fe2+ + 2e Fe(s) −0.44
C 2CO2(g) + 2H+ + 2e HOOCCOOH(aq) −0.43
Cr Cr3+ + e Cr2+ −0.42
Cd Cd2+ + 2e Cd(s) −0.40
Ge GeO2(s) + 2H+ + 2e GeO(s) + H
2
O
−0.37
Cu Cu2O(s) + H
2
O
+ 2e
2Cu(s) + 2OH −0.360
Pb PbSO
4
(s) + 2e
Pb(s) + SO2−
4
−0.3588
Pb PbSO
4
(s) + 2e
Pb(Hg) + SO2−
4
−0.3505
Eu Eu3+ + e Eu2+ −0.35
In In3+
+ 3e
In(s) −0.34
Tl Tl+ + e Tl(s) −0.34
Ge Ge(s) + 4H+ + 4e GeH
4
(g)
−0.29
Co Co2+ + 2e Co(s) −0.28
P H
3
PO
4
(aq) + 2H+ + 2e
H
3
PO
3
(aq) + H
2
O
−0.276
V V3+ + e V2+ −0.26
Ni Ni2+ + 2e Ni(s) −0.25
As As(s) + 3H+ + 3e AsH
3
(g)
−0.23
Ag AgI(s) + e Ag(s) + I −0.15224
Mo MoO2(s) + 4H+ + 4e Mo(s) + 2H
2
O
−0.15
Si Si(s) + 4H+ + 4e SiH
4
(g)
−0.14
Sn Sn2+ + 2e Sn(s) −0.13
O O2(g) + H+ + e HO2•(aq) −0.13
Pb Pb2+ + 2e Pb(s) −0.126
W WO2(s) + 4H+ + 4e W(s) + 2H
2
O
−0.12
P P(red) + 3H+ + 3e PH
3
(g)
−0.111
C CO2(g) + 2H+ + 2e HCOOH(aq) −0.11
Se Se(s) + 2H+ + 2e H2Se(g) −0.11
C CO2(g) + 2H+ + 2e CO(g) + H
2
O
−0.11
Sn SnO(s) + 2H+ + 2e Sn(s) + H
2
O
−0.10
Sn SnO2(s) + 2H+ + 2e SnO(s) + H
2
O
−0.09
W WO
3
(aq) + 6H+ + 6e
W(s) + 3H
2
O
−0.09
Fe Fe
3
O
4
(s) + 8H+ + 8e
3Fe(s) + 4H
2
O
−0.085
P P(white) + 3H+ + 3e PH
3
(g)
−0.063
Fe Fe3+ + 3e Fe(s) −0.04
C HCOOH(aq) + 2H+ + 2e HCHO(aq) + H
2
O
−0.03
H 2H+ + 2e H2(g) 0.0000
Ag AgBr(s) + e Ag(s) + Br +0.07133
S S
4
O2−
6
+ 2e
2S
2
O2−
3
+0.08
N N2(g) + 2H
2
O
+ 6H+ + 6e
2NH
4
OH
(aq)
+0.092
Hg HgO(s) + H
2
O
+ 2e
Hg(l) + 2OH +0.0977
Cu Cu(NH
3
)2+
4
+ e
Cu(NH20−
3
+ 2NH
3
+0.10
Ru Ru(NH
3
)3+
6
+ e
Ru(NH
3
)2+
6
+0.10
N N
2
H
4
(aq) + 4H
2
O
+ 2e
2NH+
4
+ 4OH
+0.11
Mo H
2
MoO
4
(aq) + 6H+ + 6e
Mo(s) + 4H
2
O
+0.11
Ge Ge4+ + 4e Ge(s) +0.12
C C(s) + 4H+ + 4e CH
4
(g)
+0.13
C HCHO(aq) + 2H+ + 2e CH
3
OH
(aq)
+0.13
S S(s) + 2H+ + 2e H2S(g) +0.14
Sn Sn4+ + 2e Sn2+ +0.15
Cu Cu2+ + e Cu+ +0.159
S HSO
4
+ 3H+ + 2e
SO2(aq) + 2H
2
O
+0.16
U UO2+
2
+ e
UO2+ +0.163
S SO2−
4
+ 4H+ + 2e
SO2(aq) + 2H
2
O
+0.17
Ti TiO2+ + 2H+ + e Ti3+ + H
2
O
+0.19
Sb SbO+ + 2H+ + 3e Sb(s) + H
2
O
+0.20
Fe 3Fe
2
O
3
(s) + 2H+ + 2e
2 Fe
3
O
4
(s) + H
2
O
+0.22
Ag AgCl(s) + e Ag(s) + Cl
+0.22233
As H
3
AsO
3
(aq) + 3H+ + 3e
As(s) + 3H
2
O
+0.24
Ge GeO(s) + 2H+ + 2e Ge(s) + H
2
O
+0.26
U UO+
2
+ 4H+ + e
U4+
+ 2H
2
O
+0.273
Re Re3+
+ 3e
Re(s) +0.300
Bi Bi3+
+ 3e
Bi(s) +0.308
Cu Cu2+ + 2e Cu(s) +0.337
V VO2+ + 2H+ + e V3+
+ H
2
O
+0.34
Fe [Fe(CN)
6
]3−
+ e
[Fe(CN)
6
]4−
+0.3704
Fe Fc+ + e Fc(s) +0.4
O O2(g) + 2H
2
O
+ 4e
4OH(aq) +0.401
Mo H
2
MoO
4
+ 6H+ + 3e
Mo3+
+ 4H
2
O
+0.43
C CH
3
OH
(aq) + 2H+ + 2e
CH
4
(g) + H
2
O
+0.50
S SO2(aq) + 4H+ + 4e S(s) + 2H
2
O
+0.50
Cu Cu+ + e Cu(s) +0.520
C CO(g) + 2H+ + 2e C(s) + H
2
O
+0.52
I I
3
3I
+0.53
I I
2
(s) + 2e
2I
+0.54
Au [AuI
4
]
+ 3e
Au(s) + 4I
+0.56
As H
3
AsO
4
(aq) + 2H+ + 2e
H
3
AsO
3
(aq) + H
2
O
+0.56
Au [AuI2] + e Au(s) + 2I +0.58
Mn MnO
4
+ 2H
2
O
+ 3e
MnO2(s) + 4OH +0.595
S S
2
O2−
3
+ 6H+ + 4e
2S(s) + 3H
2
O
+0.60
Mo H
2
MoO
4
(aq) + 2H+ + 2e
MoO2(s) + 2H
2
O
+0.65
C + 2H+ + 2e +0.6992
O O2(g) + 2H+ + 2e H2O2(aq) +0.70
Tl Tl3+ + 3e Tl(s) +0.72
Pt PtCl2−
6
+ 2e
PtCl2−
4
+ 2Cl
+0.726
Fe Fe
2
O
3
(s) + 6H+ + 2e
2Fe2+
+ 3H
2
O
+0.728
Se H
2
SeO
3
(aq) + 4H+ + 4e
Se(s) + 3H
2
O
+0.74
Pt PtCl2−
4
+ 2e
Pt(s) + 4Cl +0.758
Fe Fe3+ + e Fe2+ +0.77
Ag Ag+ + e Ag(s) +0.7996
Hg Hg22+ + 2e 2Hg(l) +0.80
N NO
3
(aq) + 2H+ + e
NO2(g) + H
2
O
+0.80
Fe 2FeO2−
4
+ 5H
2
O
+ 6e
Fe
2
O
3
(s) + 10 OH
+0.81
Au [AuBr
4
]
+ 3e
Au(s) + 4Br
+0.85
Hg Hg2+ + 2e Hg(l) +0.85
Ir [IrCl
6
]2−
+ e
[IrCl
6
]3−
+0.87
Mn MnO
4
+ H+ + e
HMnO
4
+0.90
Hg 2Hg2+ + 2e Hg22+ +0.91
Pd Pd2+ + 2e Pd(s) +0.915
Au [AuCl
4
]
+ 3e
Au(s) + 4Cl
+0.93
Mn MnO2(s) + 4H+ + e Mn3+
+ 2H
2
O
+0.95
N NO
3
(aq) + 4H+ + 3e
NO(g) + 2H
2
O
(l)
+0.958
Au [AuBr2] + e Au(s) + 2Br +0.96
Fe Fe
3
O
4
(s) + 8H+ + 2e
3Fe2+
+ 4H
2
O
+0.98
Xe [HXeO
6
]3−
+ 2H
2
O
+ 2e
[HXeO
4
]
+ 4OH
+0.99
V [VO
2
]+
(aq) + 2H+ + e
[[VO]2+
(aq) + H
2
O
+1.0
Te H
6
TeO
6
(aq) + 2H+ + 2e
TeO2(s) + 4H
2
O
+1.02
Br Br2(l) + 2e 2Br +1.066
Br Br2(aq) + 2e 2Br
+1.0873
I IO
3
+ 5H+ + 4e
HIO(aq) + 2H
2
O
+1.13
Au [AuCl2] + e Au(s) + 2Cl +1.15
Se HSeO
4
+ 3H+ + 2e
H
2
SeO
3
(aq) + H
2
O
+1.15
Ag Ag
2
O
(s) + 2H+ + 2e
2Ag(s) + H
2
O
+1.17
Cl ClO
3
+ 2H+ + e
ClO
2
(g) + H
2
O
+1.18
Xe [HXeO
6
]3−
+ 5H
2
O
+ 8 e
Xe(g) + 11OH +1.18
Pt Pt2+ + 2e Pt(s) +1.188
Cl ClO2(g) + H+ + e HClO2(aq) +1.19
I 2IO
3
+ 12H+ + 10e
I2(s) + 6H
2
O
+1.20
Cl ClO
4
+ 2H+ + 2e
ClO
3
+ H
2
O
+1.20
Mn MnO
2
(s) + 4H+ + 2e
Mn2+ + 2H
2
O
+1.224
O O2(g) + 4H+ + 4e 2H
2
O
+1.229
Xe [HXeO
4
]
+ 3H
2
O
+ 6 e
Xe(g) + 7OH +1.24
Tl Tl3+ + 2e Tl+ +1.25
Cr Cr
2
O2−
7
+ 14H+ + 6e
2Cr3+ + 7H
2
O
+1.33
Cl Cl2(g) + 2e 2Cl +1.36
Co CoO2(s) + 4H+ + e Co3+ + 2H
2
O
+1.42
N 2NH
3
OH+
+ H+ + 2e
N
2
H+
5
+ 2H
2
O
+1.42
I 2HIO(aq) + 2H+ + 2e I2(s) + 2H
2
O
+1.44
Br BrO
3
+ 5H+ + 4e
HBrO(aq) + 2H
2
O
+1.45
Pb β-PbO2(s) + 4H+ + 2e Pb2+ + 2H
2
O
+1.460
Pb α-PbO2(s) + 4H+ + 2e Pb2+ + 2H
2
O
+1.468
Br 2BrO
3
+ 12H+ + 10e
Br2(l) + 6H
2
O
+1.48
Cl 2ClO
3
+ 12H+ + 10e
Cl2(g) + 6H
2
O
+1.49
Cl HClO(aq) + H+ + 2e Cl
(aq) + H
2
O
+1.49
Mn MnO
4
+ 8H+ + 5e
Mn2+ + 4H
2
O
+1.51
O HO2 + H+ + e H2O2(aq) +1.51
Au Au3+ + 3e Au(s) +1.52
Ni NiO2(s) + 2H+ + 2e Ni2+ + 2OH +1.59
Ce Ce4+
+ e
Ce3+
+1.61
Cl 2HClO(aq) + 2H+ + 2e Cl2(g) + 2H
2
O
+1.63
Ag Ag
2
O
3
(s) + 6H+ + 4e
2Ag+ + 3H
2
O
+1.67
Cl HClO
2
(aq) + 2H+ + 2e
HClO(aq) + H
2
O
+1.67
Pb Pb4+ + 2e Pb2+ +1.69
Mn MnO
4
+ 4H+ + 3e
MnO2(s) + 2H
2
O
+1.70
Ag AgO(s) + 2H+ + e Ag+ + H
2
O
+1.77
O H
2
O
2
(aq) + 2H+ + 2e
2H
2
O
+1.78
Co Co3+ + e Co2+ +1.82
Au Au+ + e Au(s) +1.83
Br BrO
4
+ 2H+ + 2e
BrO
3
+ H
2
O
+1.85
Ag Ag2+ + e Ag+ +1.98
O S
2
O2−
8
+ 2e
2SO2−
4
+2.010
O O
3
(g) + 2H+ + 2e
O2(g) + H
2
O
+2.075
Mn HMnO
4
+ 3H+ + 2e
MnO2(s) + 2H
2
O
+2.09
Xe XeO
3
(aq) + 6H+ + 6 e
Xe(g) + 3H
2
O
+2.12
Xe H
4
XeO
6
(aq) + 8H+ + 8 e
Xe(g) + 6 H
2
O
+2.18
Fe FeO2−
4
+ 3e + 8H+
Fe3+ + 4H
2
O
+2.20
Xe XeF2(aq) + 2H+ + 2e Xe(g) + 2HF(aq) +2.32
Xe H
4
XeO
6
(aq) + 2H+ + 2e
XeO
3
(aq) + 3H
2
O
+2.42
F F2(g) + 2e 2F +2.87
F F2(g) + 2H+ + 2e 2HF(aq) +3.05
Kr KrF2(aq) + 2e Kr(g) + 2F(aq) +3.27

See also

  1. Not specified in the indicated reference, but assumed due to the difference between the value −0.454 and that computed by (2×(−0.499) + (−0.508))/3 = −0.502, exactly matching the difference between the values for white (−0.063) and red (−0.111) phosphorus in equilibrium with PH3.

References

  1. Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN 0-8493-0487-3.
  2. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  3. Vanýsek, Petr (2011). "Electrochemical Series". In Haynes, William M. (ed.). CRC Handbook of Chemistry and Physics (92nd ed.). CRC Press. pp. 5-80–9. ISBN 978-1-4398-5512-6.
  4. Atkins, Peter (2010). Inorganic Chemistry (5th ed.). W. H. Freeman. p. 153. ISBN 978-1-42-921820-7.
  5. Atkins, Peter W. (1997). Physical Chemistry (6th ed.). W.H. Freeman. ISBN 9780716734659.
  6. David R. Lide, ed., CRC Handbook of Chemistry and Physics, Internet Version 2005, http://www.hbcpnetbase.com, CRC Press, Boca Raton, FL, 2005.
  7. Vanýsek, Petr (2012). "Electrochemical Series". In Haynes, William M. (ed.). Handbook of Chemistry and Physics (93rd ed.). CRC Press. pp. 5–80. ISBN 9781439880494.
  8. Aylward, Gordon; Findlay, Tristan (2008). SI Chemical Data (6th ed.). Wiley. ISBN 978-0-470-81638-7.
  9. "compounds information". Iron. WebElements Periodic Table of the Elements.
  10. Bard, Allen J.; Parsons, Roger; Jordan, Joseph (1985). Standard Potentials in Aqueous Solution. CRC Press. ISBN 978-0-8247-7291-8.
  11. Bard, A.J.; Faulkner, L.R. (2001). Electrochemical Methods. Fundamentals and Applications (2nd ed.). Wiley. ISBN 9781118312803.
  12. Pourbaix, Marcel (1966). Atlas of Electrochemical Equilibria in Aqueous Solutions. Houston, Texas; Cebelcor, Brussels: NACE International. OCLC 475102548.
  13. Pang, Suh Cem; Chin, Suk Fun; Anderson, Marc A. (July 2007). "Redox equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of pH and redox potential". J. Colloid Interface Sci. 311 (1): 94–101. Bibcode:2007JCIS..311...94P. doi:10.1016/j.jcis.2007.02.058. PMID 17395194. Retrieved 2017-03-26.
  14. Rock, Peter A. (February 1966). "The Standard Oxidation Potential of the Ferrocyanide-Ferricyanide Electrode at 25° and the Entropy of Ferrocyanide Ion". The Journal of Physical Chemistry. 70 (2): 576–580. doi:10.1021/j100874a042. ISSN 0022-3654.
  15. Connelly, Neil G.; Geiger, William E. (1 January 1996). "Chemical Redox Agents for Organometallic Chemistry". Chemical Reviews. 96 (2): 877–910. doi:10.1021/cr940053x. PMID 11848774.
  16. "compounds information". Xenon. WebElements Periodic Table of the Elements.
  17. Cotton, F. Albert; Wilkinson, Geoffrey; Murillo, Carlos A.; Bochmann, Manfred (1999), Advanced Inorganic Chemistry (6th ed.), New York: Wiley-Interscience, ISBN 0-471-19957-5.
  18. Courtney, Arlene. "Oxidation Reduction Chemistry of the Elements". Ch 412 Advanced Inorganic Chemistry: Reading Materials. Western Oregon University.
  19. Leszczyński, P.J.; Grochala, W. (2013). "Strong Cationic Oxidizers: Thermal Decomposition, Electronic Structure and Magnetism of Their Compounds" (PDF). Acta Chim. Slov. 60 (3): 455–470.
General
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.