Silver sulfide

Silver sulfide is an inorganic compound with the formula Ag
2
S
. A dense black solid, it is the only sulfide of silver. It is useful as a photosensitizer in photography. It constitutes the tarnish that forms over time on silverware and other silver objects. Silver sulfide is insoluble in most solvents, but is degraded by strong acids. Silver sulfide is a network solid made up of silver (electronegativity of 1.98) and sulfur (electronegativity of 2.58) where the bonds have low ionic character (approximately 10%).

Silver sulfide
Names
IUPAC name
Silver(I) sulfide, Silver sulfide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.040.384
EC Number
  • 244-438-2
UNII
Properties
Ag2S
Molar mass 247.80 g·mol−1
Appearance Grayish-black crystal
Odor Odorless
Density 7.234 g/cm3 (25 °C)[1][2]
7.12 g/cm3 (117 °C)[3]
Melting point 836 °C (1,537 °F; 1,109 K)[1]
6.21·10−15 g/L (25 °C)
6.31·10−50
Solubility Soluble in aq. HCN, aq. citric acid with KNO3
Insoluble in acids, alkalies, aqueous ammoniums[4]
Structure
Cubic, cI8 (α-form)
Monoclinic, mP12 (β-form)
Cubic, cF12 (γ-form)[3][5]
P21/n, No. 14 (α-form)[5]
Im3m, No. 229 (β-form)
Fm3m, No. 225 (γ-form)[3]
2/m (α-form)[5]
4/m 3 2/m (β-form, γ-form)[3]
a = 4.23 Å, b = 6.91 Å, c = 7.87 Å (α-form)[5]
α = 90°, β = 99.583°, γ = 90°
Thermochemistry
76.57 J/mol·K[6]
143.93 J/mol·K[6]
Std enthalpy of
formation fH298)
−32.59 kJ/mol[6]
−40.71 kJ/mol[6]
Hazards
Main hazards May cause irritation
GHS pictograms [2]
GHS Signal word Warning
GHS hazard statements
H315, H319, H335[2]
P261, P305+351+338[2]
NFPA 704 (fire diamond)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Miscellanea

  • It is a component of classical qualitative inorganic analysis.[8]
  • When combined with silver, hydrogen sulfide gas creates a layer of black silver sulfide patina on the silver, protecting the inner silver from further conversion to silver sulfide.[9]
  • Silver whiskers can form when silver sulfide forms on the surface of silver electrical contacts operating in an atmosphere rich in hydrogen sulfide and high humidity.[10] Such atmospheres can exist in sewage treatment and paper mills.[11][12]
  • In 1833 Michael Faraday noticed that the resistance of silver sulfide decreased dramatically as temperature increased. This constitutes the first report ever or a semiconducting material.[13]

Structure

Three forms are known: monoclinic acanthite (β-form), stable below 179 °C, body centered cubic so-called argentite (α-form), stable above 180 °C, and a high temperature face-centred cubic (γ-form) stable above 586 °C.[5] The higher temperature forms are electrical conductors. It is found in nature as relatively low temperature mineral acanthite. Acanthite is an important ore of silver. The acanthite, monoclinic, form features two kinds of silver centers, one with two and the other with three near neighbour sulfur atoms.[14] Argentite refers to a cubic form, which, due to instability in "normal" temperatures, is found in form of the pseudomorphosis of acanthite after argentite.

References

  1. Lide, David R., ed. (2009). CRC Handbook of Chemistry and Physics (90th ed.). Boca Raton, Florida: CRC Press. ISBN 978-1-4200-9084-0.
  2. Sigma-Aldrich Co., Silver sulfide. Retrieved on 2014-07-13.
  3. Tonkov, E. Yu (1992). High Pressure Phase Transformations: A Handbook. 1. Gordon and Breach Science Publishers. p. 13. ISBN 978-2-88124-761-3.
  4. Comey, Arthur Messinger; Hahn, Dorothy A. (February 1921). A Dictionary of Chemical Solubilities: Inorganic (2nd ed.). New York: The MacMillan Company. p. 835.
  5. "Silver sulfide (Ag2S) crystal structure". Non-Tetrahedrally Bonded Elements and Binary Compounds I. Landolt-Börnstein - Group III Condensed Matter. 41C. Springer Berlin Heidelberg. 1998. pp. 1–4. doi:10.1007/10681727_86. ISBN 978-3-540-31360-1.
  6. Pradyot, Patnaik (2003). Handbook of Inorganic Chemicals. The McGraw-Hill Companies, Inc. p. 845. ISBN 978-0-07-049439-8.
  7. "MSDS of Silver Sulfide". saltlakemetals.com. Utah, USA: Salt Lake Metals. Retrieved 2014-07-13.
  8. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.
  9. Zumdahl, Steven S.; DeCoste, Donald J. (2013). Chemical Principles (7th ed.). p. 505. ISBN 978-1-111-58065-0.
  10. "Degradation of Power Contacts in Industrial Atmosphere: Silver Corrosion and Whiskers" (PDF). 2002.
  11. Dutta, Paritam K.; Rabaey, Korneel; Yuan, Zhiguo; Rozendal, René A.; Keller, Jürg (2010). "Electrochemical sulfide removal and recovery from paper mill anaerobic treatment effluent". Water Research. 44 (8): 2563–2571. doi:10.1016/j.watres.2010.01.008. ISSN 0043-1354. PMID 20163816.
  12. "Control of Hydrogen Sulfide Generation | Water & Wastes Digest". www.wwdmag.com. Retrieved 2018-07-05.
  13. "1833 - First Semiconductor Effect is Recorded". Computer History Museum. Retrieved 24 June 2014.
  14. Frueh, A. J. (1958). The crystallography of silver sulfide, Ag2S. Zeitschrift für Kristallographie-Crystalline Materials, 110(1-6), 136-144.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.