LARES (satellite)

LARES (an acronym for Laser Relativity Satellite) and is an Italian Space Agency[4] passive satellite which was placed into orbit by the ESA Centre Spatial Guyanais located in Kourou, French Guiana. The satellite was launched on a Vega rocket on 13 February 2012.[5][6][7][8]

LARES
The aspect of LARES satellite
Mission typeLaser ranging satellite
Test of GR[1][2]
OperatorItalian Space Agency (ASI)
COSPAR ID2012-006A
SATCAT no.38077
Websitehttp://www.lares-mission.com/
Spacecraft properties
Launch mass386.8 kg
Dimensions364 mm (diameter)
Power0 watt
Start of mission
Launch date13 February 2012, 22:45:00 UTC
RocketVega VV01
Launch siteKourou, ELA-1
Orbital parameters
Reference systemGeocentric[3]
RegimeLow Earth
Perigee altitude1437 km
Apogee altitude1451 km
Inclination69.49°
Period114.75 minutes
Epoch13 February 2012
 

An improved version called LARES 2 is scheduled for launch in December 2020, on the first flight of Vega-C.[9]

The LARES satellite is the densest known object orbiting in the Solar System.[1] The high density helps reduce disturbances from environmental factors such as solar radiation pressure.

LARES

Composition

The satellite is made of tungsten alloy and houses 92 cube-corner retroreflectors that are used to track the satellite via laser from stations on Earth (satellite laser ranging). LARES's body has a diameter of about 36.4 centimetres (14.3 in) and weighs about 387 kilograms (853 lb).[1][10] LARES was inserted in an orbit with 1,450 kilometres (900 mi) of perigee, an inclination of 69.5°, and reduced eccentricity. The satellite is tracked by the International Laser Ranging Service stations.[11][12]

Scientific goals

The main scientific target of the LARES mission is the measurement of the Lense–Thirring effect, also known as frame-dragging, with an accuracy of about 1%, according to its proponent, Ignazio Ciufolini (Principal Investigator of the mission), and the LARES Scientific Team.[13] The reliability of such an estimate is currently contested.[14] In comparison to this ambitious goal, a recent analysis of 3.5 years of laser-ranging data has been reported with a claimed accuracy of about 4%.[15] Critical remarks appeared later in the literature.[16] Beyond the project's key mission, the LARES satellite may also be used for measurements in the fields of geodynamics and satellite geodesy.

LARES 2

LARES 2 is due to launch on a Vega-C in early 2020.

LARES 2 may reduce the uncertainty in the frame-dragging effect by a factor of at least 10.[17] LARES 2's material is unknown. However, it is speculated to be made out of copper and not titanium.[17]

See also


References

  1. "The LAser RElativity Satellite". The LARES Team. Archived from the original on 2012-12-31. Retrieved 2013-02-28.
  2. "LARES". International Laser Ranging Service. Retrieved 2013-02-28.
  3. Peat, Chris (29 July 2013). "LARES - Orbit". Heavens-Above. Retrieved July 29, 2013.
  4. "LARES: Satellite per misure relativistiche" (in Italian). Agenzia Spaziale Italiana. Archived from the original on October 15, 2009. Retrieved 2009-03-12.
  5. "Vega Launch Vehicle". European Space Agency.
  6. "Vega overview". Archived from the original on 2009-03-30.
  7. "Prepping satellite to test Albert Einstein".
  8. "Overview of ESA activities in 2012 of interest to media".
  9. "Launch Schedule". spaceflightnow.com. SFN. 18 May 2020. Retrieved 18 May 2020.
  10. Peroni, I.; et al. (2007). "The Design of LARES: A satellite for testing General Relativity". Proceedings of the 58th International Astronautical Congress. IAC-07-B4.2.07.
  11. "International Laser Ranging Service".
  12. "LARES page on the ILRS Site".
  13. Ciufolini, I.; Paolozzi A.; Pavlis E. C.; Ries J. C.; Koenig R.; Matzner R. A.; Sindoni G. & Neumayer H. (2009). "Towards a One Percent Measurement of Frame Dragging by Spin with Satellite Laser Ranging to LAGEOS, LAGEOS 2 and LARES and GRACE Gravity Models". Space Science Reviews. 148 (1–4): 71–104. Bibcode:2009SSRv..148...71C. doi:10.1007/s11214-009-9585-7.
    • Ciufolini, I.; E. Pavlis; A. Paolozzi; J. Ries; R. Koenig; R. Matzner; G. Sindoni; H. Neumayer (2012). "Phenomenology of the Lense-Thirring effect in the solar system: Measurement of frame-dragging with laser ranged satellites". New Astronomy. 17 (3): 341–346. Bibcode:2012NewA...17..341C. doi:10.1016/j.newast.2011.08.003.
    • Ciufolini, I.; Paolozzi A.; Pavlis E. C.; Ries J. C.; Koenig R.; Matzner R. A.; Sindoni G. & Neumayer H. (2010). "Gravitomagnetism and Its Measurement with Laser Ranging to the LAGEOS Satellites and GRACE Earth Gravity Models". General Relativity and John Archibald Wheeler. Astrophysics and Space Science Library. 367. SpringerLink. pp. 371–434. doi:10.1007/978-90-481-3735-0_17. ISBN 978-90-481-3734-3.
    • Ciufolini, I.; Paolozzi A.; Pavlis E. C.; Ries J.; Koenig R.; Sindoni G.; Neumeyer H. (2011). "Testing Gravitational Physics with Satellite Laser Ranging". European Physical Journal Plus. 126 (8): 72. Bibcode:2011EPJP..126...72C. doi:10.1140/epjp/i2011-11072-2.
    • Ciufolini, I.; Pavlis E. C.; Paolozzi A.; Ries J.; Koenig R.; Matzner R.; Sindoni G.; Neumayer K.H. (2011-08-03). "Phenomenology of the Lense-Thirring effect in the Solar System: Measurement of frame-dragging with laser ranged satellites". New Astronomy. 17 (3): 341–346. Bibcode:2012NewA...17..341C. doi:10.1016/j.newast.2011.08.003.
    • Ciufolini, I.; A. Paolozzi; C. Paris (2012). "Overview of the LARES mission: orbit, error analysis and technological aspects". Journal of Physics. Conference Series. 354 (1): 012002. Bibcode:2012JPhCS.354a2002C. doi:10.1088/1742-6596/354/1/012002.
    • Ciufolini, I.; V. G. Gurzadyan; R. Penrose; A. Paolozzi (2012). Geodesic motion in general relativity: LARES in Earth's gravity. Low Dimensional Physics and Gauge Principles. pp. i–xv. doi:10.1142/9789814440349_fmatter. ISBN 978-981-4440-33-2.
  14. Iorio, L. (2009). "Towards a 1% measurement of the Lense-Thirring effect with LARES?". Advances in Space Research. 43 (7): 1148–1157. arXiv:0802.2031. Bibcode:2009AdSpR..43.1148I. doi:10.1016/j.asr.2008.10.016.
  15. Ciufolini, I.; A. Paolozzi; E. C. Pavlis; R. Koenig; J. Ries; V. Gurzadyan; R. Matzner; R. Penrose; G. Sindoni; C. Paris; H. Khachatryan; S. Mirzoyan (March 2016). "A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earth's dragging of inertial frames". The European Physical Journal C. 76 (3): 120. arXiv:1603.09674. Bibcode:2016EPJC...76..120C. doi:10.1140/epjc/s10052-016-3961-8. PMC 4946852. PMID 27471430.
  16. Iorio, L. (February 2017). "A comment on " A test of general relativity using the LARES and LAGEOS satellites and a GRACE Earth gravity model. Measurement of Earth's dragging of inertial frames," by I. Ciufolini et al". The European Physical Journal C. 77 (2): 73. arXiv:1701.06474. Bibcode:2017EPJC...77...73I. doi:10.1140/epjc/s10052-017-4607-1.
  17. A new laser-ranged satellite for General Relativity and space geodesy: I. An introduction to the LARES2 space experiment arXiv:1910.13818
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.