F-space

In functional analysis, an F-space is a vector space V over the real or complex numbers together with a metric d : V × VR so that

  1. Scalar multiplication in V is continuous with respect to d and the standard metric on R or C.
  2. Addition in V is continuous with respect to d.
  3. The metric is translation-invariant; i.e., d(x + a, y + a) = d(x, y) for all x, y and a in V
  4. The metric space (V, d) is complete.

The operation x ↦ ||x|| := d(0,x) is called an F-norm, although in general an F-norm is not required to be complete. By translation-invariance, the metric is recoverable from the F-norm. Thus, a real or complex F-space is equivalently a real or complex vector space equipped with a complete F-norm.

Some authors use the term Fréchet space rather than F-space, but usually the term "Fréchet space" is reserved for locally convex F-spaces. Some other authors use the term "F-space" as a synonym of "Fréchet space", by which they mean a locally convex complete metrizable TVSs. The metric may or may not necessarily be part of the structure on an F-space; many authors only require that such a space be metrizable in a manner that satisfies the above properties.

Examples

All Banach spaces and Fréchet spaces are F-spaces. In particular, a Banach space is an F-space with an additional requirement that d(αx, 0) = |α|⋅d(x, 0).[1]

The Lp spaces are F-spaces for all p ≥ 0 and for p ≥ 1 they are locally convex and thus Fréchet spaces and even Banach spaces.

Example 1

is an F-space. It admits no continuous seminorms and no continuous linear functionals — it has trivial dual space.

Example 2

Let be the space of all complex valued Taylor series

on the unit disc such that

then (for 0 < p < 1) are F-spaces under the p-norm:

In fact, is a quasi-Banach algebra. Moreover, for any with the map is a bounded linear (multiplicative functional) on .

  • A linear almost continuous map into an F-space whose graph is closed is continuous.[2]
  • A linear almost open map into an F-space whose graph is closed is necessarily an open map.[2]
  • A linear continuous almost open map from an F-space is necessarily an open map.[3]
  • A linear continuous almost open map from an F-space whose image is of the second category in the codomain is necessarily a surjective open map.[2]

See also

K-space (functional analysis)


References

  1. Dunford N., Schwartz J.T. (1958). Linear operators. Part I: general theory. Interscience publishers, inc., New York. p. 59
  2. Husain 1978, p. 14.
  3. Husain 1978, p. 15.
  • Husain, Taqdir (1978). Barrelledness in topological and ordered vector spaces. Berlin New York: Springer-Verlag. ISBN 3-540-09096-7. OCLC 4493665.
  • Khaleelulla, S. M. (1982). Counterexamples in topological vector spaces. Berlin New York: Springer-Verlag. ISBN 978-3-540-11565-6. OCLC 8588370.
  • Rudin, Walter (1966), Real & Complex Analysis, McGraw-Hill, ISBN 0-07-054234-1
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.