Potassium niobate

Potassium niobate
Names
IUPAC name
Potassium niobate
Other names
niobate, niobium potassium oxide, potassium columbate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.573
Properties
KNbO3
Molar mass 180.003 g·mol−1
Appearance White rhombohedral crystals
Density 4.640 g/cm3
Melting point ≈ 1100 °C[1]
Hazards
Lethal dose or concentration (LD, LC):
3000 mg/kg (oral, rat)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Potassium niobate (KNbO3) is a perovskite ferroelectric crystal. It has nonlinear optical coefficient properties, making it common in the manufacture of lasers.[2] Nanowires of potassium niobate have been used to produce tunable coherent light. The LD50 for potassium niobate is 3000 mg/kg (oral, rat).

Crystal Structure

On cooling from high temperature, KNbO3 undergoes a series of structural phase transitions. At 435 °C, the crystal symmetry changes from cubic centrosymmetric (Pm3 ̅m) to tetragonal non-centrosymmetric (P4mm). On further cooling, at 225 °C the crystal symmetry changes from tetragonal (P4mm) to orthorhombic (Amm2) and at −50 °C from orthorhombic (Amm2) to rhombohedral (R3m).

Use in research

Potassium niobate has been found useful in many different areas of materials science research,[3] including properties of lasers,[4] quantum teleportation,[5] and it has been used to study the optical properties of particulate composite materials.[6]

In addition to research in electronic memory storage,[3] potassium niobate is used in resonant doubling, a technique developed at the IBM Almaden Research Center.[4] This technique allows small infrared lasers to convert output into blue light, a critical technology for the production of blue lasers and technology dependent upon them.

References

  1. CRC Handbook, 90th Edition (03 Jun 2009) ISBN 1-4200-9084-4, section 4: Physical Constants of Inorganic Compounds, page 83
  2. Palik, Edward D. (1998). Handbook of Optical Constants of Solids 3. Academic Press. p. 821. ISBN 978-0-12-544423-1. Retrieved 13 December 2012.
  3. 1 2 "In Science Fields". The Science News-Letter. 62 (17): 264–265. 1952-10-25. doi:10.2307/3931381. JSTOR 3931381.   via JSTOR (subscription required)
  4. 1 2 Regalado, Antonio (1995-03-31). "Blue-Light Special". Science. New Series. 267 (5206): 1920. Bibcode:1995Sci...267.1920R. doi:10.1126/science.267.5206.1920. JSTOR 2886437.   via JSTOR (subscription required)
  5. Furusawa, A.; J. L. Sørensen; S. L. Braunstein; C. A. Fuchs; H. J. Kimble; E. S. Polzik (1998-10-23). "Unconditional Quantum Teleportation". Science. New Series. 282 (5389): 706–709. Bibcode:1998Sci...282..706F. doi:10.1126/science.282.5389.706. JSTOR 2899257.   via JSTOR (subscription required)
  6. Lakhtakia, Akhlesh; Tom G. Mackay (2007-02-08). "Electrical Control of the Linear Optical Properties of Particulate Composite Materials". Proceedings of the Royal Society A. 463 (2078): 583–592. arXiv:physics/0607274. Bibcode:2007RSPSA.463..583L. doi:10.1098/rspa.2006.1783. JSTOR 20209136.   via JSTOR (subscription required)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.