Glycoside hydrolase family 5

Cellulase (glycosyl hydrolase family 5)
Identifiers
Symbol Cellulase
Pfam PF00150
Pfam clan CL0058
InterPro IPR001547
PROSITE PDOC00565
SCOP 2exo
SUPERFAMILY 2exo
OPM superfamily 117
OPM protein 2osx
CAZy GH5
Membranome 1365

In molecular biology, glycoside hydrolase family 5 is a family of glycoside hydrolases.

Glycoside hydrolases EC 3.2.1. are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycoside hydrolases, based on sequence similarity, has led to the definition of >100 different families.[1][2][3] This classification is available on the CAZy web site,[4][5] and also discussed at CAZypedia, an online encyclopedia of carbohydrate active enzymes.[6][7]

Glycoside hydrolase family 5 CAZY GH_5 comprises enzymes with several known activities including endoglucanase (EC 3.2.1.4); beta-mannanase (EC 3.2.1.78); exo-1,3-glucanase (EC 3.2.1.58); endo-1,6-glucanase (EC 3.2.1.75); xylanase (EC 3.2.1.8); endoglycoceramidase (EC 3.2.1.123).

The microbial degradation of cellulose and xylans requires several types of enzymes. Fungi and bacteria produces a spectrum of cellulolytic enzymes (cellulases) and xylanases which, on the basis of sequence similarities, can be classified into families. One of these families is known as the cellulase family A[8] or as the glycosyl hydrolases family 5.[9] One of the conserved regions in this family contains a conserved glutamic acid residue which is potentially involved[10] in the catalytic mechanism.

In a recent study using Molecular Dynamics simulations, a considerable correlation between thermal stability and structural rigidity of members of family 5 with solved structures has been proved.[11]

References

  1. Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G (July 1995). "Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases". Proceedings of the National Academy of Sciences of the United States of America. 92 (15): 7090–4. doi:10.1073/pnas.92.15.7090. PMC 41477. PMID 7624375.
  2. Davies G, Henrissat B (September 1995). "Structures and mechanisms of glycosyl hydrolases". Structure. 3 (9): 853–9. doi:10.1016/S0969-2126(01)00220-9. PMID 8535779.
  3. Henrissat B, Bairoch A (June 1996). "Updating the sequence-based classification of glycosyl hydrolases". The Biochemical Journal. 316 ( Pt 2) (Pt 2): 695–6. PMC 1217404. PMID 8687420.
  4. "Home". CAZy.org. Retrieved 2018-03-06.
  5. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (January 2014). "The carbohydrate-active enzymes database (CAZy) in 2013". Nucleic Acids Research. 42 (Database issue): D490–5. doi:10.1093/nar/gkt1178. PMID 24270786.
  6. "Glycoside Hydrolase Family 5". CAZypedia.org. Retrieved 2018-03-06.
  7. "Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes". Glycobiology. 28 (1): 3–8. December 2018. doi:10.1093/glycob/cwx089. PMID 29040563.
  8. Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP (September 1989). "Cellulase families revealed by hydrophobic cluster analysis". Gene. 81 (1): 83–95. doi:10.1016/0378-1119(89)90339-9. PMID 2806912.
  9. Henrissat B (December 1991). "A classification of glycosyl hydrolases based on amino acid sequence similarities". The Biochemical Journal. 280 ( Pt 2): 309–16. doi:10.1042/bj2800309. PMC 1130547. PMID 1747104.
  10. Py B, Bortoli-German I, Haiech J, Chippaux M, Barras F (February 1991). "Cellulase EGZ of Erwinia chrysanthemi: structural organization and importance of His98 and Glu133 residues for catalysis". Protein Engineering. 4 (3): 325–33. doi:10.1093/protein/4.3.325. PMID 1677466.
  11. Badieyan S, Bevan DR, Zhang C (January 2012). "Study and design of stability in GH5 cellulases". Biotechnology and Bioengineering. 109 (1): 31–44. doi:10.1002/bit.23280. PMID 21809329.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.