Alkylglycerol monooxygenase

alkylglycerol monooxygenase
Identifiers
EC number 1.14.16.5
CAS number 37256-82-9
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO

Alkylglycerol monooxygenase (AGMO) (EC 1.14.16.5) is an enzyme that catalyzes the hydroxylation of alkylglycerols, a specific subclass of ether lipids. This enzyme was first described in 1964 as a pteridine-dependent etherlipid cleaving enzyme.[1] In 2010 finally, the gene coding for alkylglycerol monooxygenase was discovered as transmembrane protein 195 (TMEM195) on chromosome 7.[2] In analogy to the enzymes phenylalanine hydroxylase, tyrosine hydroxylase, tryptophan hydroxylase and nitric oxide synthase, alkylglycerol monooxygenase critically depends on the cofactor tetrahydrobiopterin and iron.

The reaction catalyzed by alkylglycerol monooxygenase:

  • 1-alkyl-sn-glycerol + tetrahydrobiopterin + O2 1-hydroxyalkyl-sn-glycerol + 6,7[8H]-dihydrobiopterin + H2O

The unstable intermediate product 1-hydroxyalkyl-sn-glycerol rearranges into the fatty aldehyde and the free glycerol derivative. The fatty aldehyde is then further oxidized to the corresponding acid by fatty aldehyde dehydrogenase.

Alkylglycerol monooxygenase is a membrane-bound mixed-function oxidase and harbours a fatty acid hydroxylase motif. The iron is believed to be coordinated by a diiron center composed of eight histidines, which can be found in all enzymes containing this motif.

Nomenclature

The systematic name for this enzyme is 1-alkyl-sn-glycerol,tetrahydrobiopterin:oxygen oxidoreductase. Other names in use are glyceryl-ether monooxygenase, glyceryl-ether cleaving enzyme, glyceryl ether oxygenase, glyceryl etherase, and O-alkylglycerol monooxygenase.

References

  1. Tietz, AA; Lindberg, M; Kennedy, EP (December 1964). "A New Pteridine-Requiring Enzyme System For The Oxidation Of Glyceryl Ethers". The Journal of Biological Chemistry. 239: 4081–90. PMID 14247652.
  2. Watschinger, K (2010). "Identification of the gene encoding alkylglycerol monooxygenase defines a third class of tetrahydrobiopterin-dependent enzymes". Proc. Natl. Acad. Sci. U.S.A. 107 (31): 13672–13677. doi:10.1073/pnas.1002404107. PMC 2922233. PMID 20643956.

Further reading

  • Watschinger K, Keller MA, Hermetter A, Golderer G, Werner-Felmayer G, Werner ER (2009). "Glyceryl ether monooxygenase resembles aromatic amino acid hydroxylases in metal ion and tetrahydrobiopterin dependence". Biol. Chem. 390: 3&ndash, 10. doi:10.1515/BC.2009.010. PMC 2847825. PMID 19007315.
  • Werner ER, Hermetter A, Prast H, Golderer G, Werner-Felmayer G (2007). "Widespread occurrence of glyceryl ether monooxygenase activity in rat tissues detected by a novel assay". J. Lipid Res. 48 (6): 1422&ndash, 1427. doi:10.1194/jlr.D600042-JLR200. PMC 2851153. PMID 17303893.
  • Ishibashi T, Imai Y (1983). "Solubilization and partial characterization of alkylglycerol monooxygenase from rat liver microsomes". Eur. J. Biochem. 132 (1): 23&ndash, 7. doi:10.1111/j.1432-1033.1983.tb07320.x. PMID 6840084.
  • Pfleger RC, Piantadosi C, Snyder F (1967). "The biocleavage of isomeric glyceryl ethers by soluble liver enzymes in a variety of species". Biochim. Biophys. Acta. 144 (3): 633&ndash, 48. doi:10.1016/0005-2760(67)90052-5. PMID 4383918.
  • Snyder F, Malone B, Piantadosi C (1973). "Tetrahydropteridine-dependent cleavage enzyme for O-alkyl lipids: substrate specificity". Biochim. Biophys. Acta. 316 (2): 259&ndash, 65. doi:10.1016/0005-2760(73)90018-0. PMID 4355017.
  • Soodsma JF, Piantadosi C, Snyder F (1972). "Partial characterization of the alkylglycerol cleavage enzyme system of rat liver". J. Biol. Chem. 247 (12): 3923&ndash, 9. PMID 4402391.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.