ERCC5

ERCC5
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesERCC5, COFS3, ERCM2, UVDR, XPG, XPGC, ERCC5-201, excision repair cross-complementation group 5, ERCC excision repair 5, endonuclease
External IDsMGI: 103582 HomoloGene: 133551 GeneCards: ERCC5
Gene location (Human)
Chr.Chromosome 13 (human)[1]
Band13q33.1Start102,807,146 bp[1]
End102,876,001 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

2073

22592

Ensembl

ENSG00000134899

ENSMUSG00000026048

UniProt

P28715

P35689

RefSeq (mRNA)

NM_000123

NM_011729

RefSeq (protein)

NP_000114

n/a

Location (UCSC)Chr 13: 102.81 – 102.88 MbChr 1: 44.15 – 44.18 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

DNA repair protein complementing XP-G cells is a protein that in humans is encoded by the ERCC5 gene.[5][6]

Excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G) is involved in excision repair of UV-induced DNA damage. Mutations cause Cockayne syndrome, which is characterized by severe growth defects, mental retardation, and cachexia. Multiple alternatively spliced transcript variants encoding distinct isoforms have been described, but the biological validity of all variants has not been determined.[6]

Mutations in ERCC5 cause arthrogryposis .[7]

XPG is a structure specific endonuclease that incises DNA at the 3’ side of the damaged nucleotide during nucleotide excision repair.

Syndromes

Mutational defects in the Ercc5(Xpg) gene can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or in combination with the severe neurodevelopmental disorder Cockayne syndrome (CS) or the infantile lethal cerebro-oculo-facio-skeletal syndrome.[8]

Mouse model

An Ercc5(Xpg) mutant mouse model presented features of premature aging including cachexia and osteoporosis with pronounced degenerative phenotypes in both liver and brain.[8] These mutant mice developed a multi-system premature aging degenerative phenotype that appears to strengthen the link between DNA damage and aging.[8] (see DNA damage theory of aging).

Dietary restriction, which extends lifespan of wild-type mice, also substantially increased the lifespan of Ercc5(Xpg) mutant mice.[9] Dietary restriction of the mutant mice, while delaying aging, also appeared to slow the accumulation of genome wide DNA damage and to preserve transcriptional output, thus contributing to improved cell viability.

Interactions

ERCC5 has been shown to interact with ERCC2.[10]

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000134899 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000026048 - Ensembl, May 2017
  3. "Human PubMed Reference:".
  4. "Mouse PubMed Reference:".
  5. Samec S, Jones TA, Corlet J, Scherly D, Sheer D, Wood RD, Clarkson SG (Oct 1994). "The human gene for xeroderma pigmentosum complementation group G (XPG) maps to 13q33 by fluorescence in situ hybridization". Genomics. 21 (1): 283–5. doi:10.1006/geno.1994.1261. PMID 8088806.
  6. 1 2 "Entrez Gene: ERCC5 excision repair cross-complementing rodent repair deficiency, complementation group 5 (xeroderma pigmentosum, complementation group G (Cockayne syndrome))".
  7. Drury, S; Boustred, C; Tekman, M; Stanescu, H; Kleta, R; Lench, N; Chitty, L. S.; Scott, R. H. (2014). "A novel homozygous ERCC5 truncating mutation in a family with prenatal arthrogryposis-Further evidence of genotype-phenotype correlation". American Journal of Medical Genetics Part A. 164 (7): 1777–83. doi:10.1002/ajmg.a.36506. PMID 24700531.
  8. 1 2 3 Barnhoorn S, Uittenboogaard LM, Jaarsma D, Vermeij WP, Tresini M, Weymaere M, Menoni H, Brandt RM, de Waard MC, Botter SM, Sarker AH, Jaspers NG, van der Horst GT, Cooper PK, Hoeijmakers JH, van der Pluijm I (2014). "Cell-autonomous progeroid changes in conditional mouse models for repair endonuclease XPG deficiency". PLoS Genet. 10 (10): e1004686. doi:10.1371/journal.pgen.1004686. PMC 4191938. PMID 25299392.
  9. Vermeij WP, Dollé ME, Reiling E, Jaarsma D, Payan-Gomez C, Bombardieri CR, Wu H, Roks AJ, Botter SM, van der Eerden BC, Youssef SA, Kuiper RV, Nagarajah B, van Oostrom CT, Brandt RM, Barnhoorn S, Imholz S, Pennings JL, de Bruin A, Gyenis Á, Pothof J, Vijg J, van Steeg H, Hoeijmakers JH (2016). "Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice". Nature. 537 (7620): 427–431. Bibcode:2016Natur.537..427V. doi:10.1038/nature19329. PMC 5161687. PMID 27556946.
  10. Iyer, N; Reagan M S; Wu K J; Canagarajah B; Friedberg E C (Feb 1996). "Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein". Biochemistry. UNITED STATES. 35 (7): 2157–67. doi:10.1021/bi9524124. ISSN 0006-2960. PMID 8652557.

Further reading

  • Miura M (1999). "Detection of chromatin-bound PCNA in mammalian cells and its use to study DNA excision repair". J. Radiat. Res. 40 (1): 1–12. Bibcode:1999JRadR..40....1M. doi:10.1269/jrr.40.1. PMID 10408173.
  • Cleaver JE, Thompson LH, Richardson AS, States JC (1999). "A summary of mutations in the UV-sensitive disorders: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy". Hum. Mutat. 14 (1): 9–22. doi:10.1002/(SICI)1098-1004(1999)14:1<9::AID-HUMU2>3.0.CO;2-6. PMID 10447254.
  • Takahashi E, Shiomi N, Shiomi T (1993). "Precise localization of the excision repair gene, ERCC5, to human chromosome 13q32.3-q33.1 by direct R-banding fluorescence in situ hybridization". Jpn. J. Cancer Res. 83 (11): 1117–9. doi:10.1111/j.1349-7006.1992.tb02731.x. PMID 1483924.
  • Mudgett JS, MacInnes MA (1991). "Isolation of the functional human excision repair gene ERCC5 by intercosmid recombination". Genomics. 8 (4): 623–33. doi:10.1016/0888-7543(90)90248-S. PMID 2276736.
  • Shiomi T, Harada Y, Saito T, et al. (1994). "An ERCC5 gene with homology to yeast RAD2 is involved in group G xeroderma pigmentosum". Mutat. Res. 314 (2): 167–75. doi:10.1016/0921-8777(94)90080-9. PMID 7510366.
  • Lehmann AR, Bootsma D, Clarkson SG, et al. (1994). "Nomenclature of human DNA repair genes". Mutat. Res. 315 (1): 41–2. doi:10.1016/0921-8777(94)90026-4. PMID 7517009.
  • Cloud KG, Shen B, Strniste GF, Park MS (1995). "XPG protein has a structure-specific endonuclease activity". Mutat. Res. 347 (2): 55–60. doi:10.1016/0165-7992(95)90070-5. PMID 7651464.
  • Matsunaga T, Mu D, Park CH, et al. (1995). "Human DNA repair excision nuclease. Analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCC1 antibodies". J. Biol. Chem. 270 (35): 20862–9. doi:10.1074/jbc.270.35.20862. PMID 7657672.
  • Nouspikel T, Clarkson SG (1994). "Mutations that disable the DNA repair gene XPG in a xeroderma pigmentosum group G patient". Hum. Mol. Genet. 3 (6): 963–7. doi:10.1093/hmg/3.6.963. PMID 7951246.
  • Habraken Y, Sung P, Prakash L, Prakash S (1994). "Human xeroderma pigmentosum group G gene encodes a DNA endonuclease". Nucleic Acids Res. 22 (16): 3312–6. doi:10.1093/nar/22.16.3312. PMC 523723. PMID 8078765.
  • O'Donovan A, Davies AA, Moggs JG, et al. (1994). "XPG endonuclease makes the 3' incision in human DNA nucleotide excision repair". Nature. 371 (6496): 432–5. Bibcode:1994Natur.371..432O. doi:10.1038/371432a0. PMID 8090225.
  • O'Donovan A, Scherly D, Clarkson SG, Wood RD (1994). "Isolation of active recombinant XPG protein, a human DNA repair endonuclease". J. Biol. Chem. 269 (23): 15965–8. PMID 8206890.
  • MacInnes MA, Dickson JA, Hernandez RR, et al. (1993). "Human ERCC5 cDNA-cosmid complementation for excision repair and bipartite amino acid domains conserved with RAD proteins of Saccharomyces cerevisiae and Schizosaccharomyces pombe". Mol. Cell. Biol. 13 (10): 6393–402. PMC 364698. PMID 8413238.
  • Scherly D, Nouspikel T, Corlet J, et al. (1993). "Complementation of the DNA repair defect in xeroderma pigmentosum group G cells by a human cDNA related to yeast RAD2". Nature. 363 (6425): 182–5. Bibcode:1993Natur.363..182S. doi:10.1038/363182a0. PMID 8483504.
  • O'Donovan A, Wood RD (1993). "Identical defects in DNA repair in xeroderma pigmentosum group G and rodent ERCC group 5". Nature. 363 (6425): 185–8. Bibcode:1993Natur.363..185O. doi:10.1038/363185a0. PMID 8483505.
  • Iyer N, Reagan MS, Wu KJ, et al. (1996). "Interactions involving the human RNA polymerase II transcription/nucleotide excision repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group B (CSB) protein". Biochemistry. 35 (7): 2157–67. doi:10.1021/bi9524124. PMID 8652557.
  • Park MS, Knauf JA, Pendergrass SH, et al. (1996). "Ultraviolet-induced movement of the human DNA repair protein, Xeroderma pigmentosum type G, in the nucleus". Proc. Natl. Acad. Sci. U.S.A. 93 (16): 8368–73. Bibcode:1996PNAS...93.8368P. doi:10.1073/pnas.93.16.8368. PMC 38677. PMID 8710877.
  • Cooper PK, Nouspikel T, Clarkson SG, Leadon SA (1997). "Defective transcription-coupled repair of oxidative base damage in Cockayne syndrome patients from XP group G". Science. 275 (5302): 990–3. doi:10.1126/science.275.5302.990. PMID 9020084. (Retracted. If this is intentional, please replace {{Retracted}} with {{Retracted|intentional=yes}}.)
  • Nouspikel T, Lalle P, Leadon SA, et al. (1997). "A common mutational pattern in Cockayne syndrome patients from xeroderma pigmentosum group G: implications for a second XPG function". Proc. Natl. Acad. Sci. U.S.A. 94 (7): 3116–21. Bibcode:1997PNAS...94.3116N. doi:10.1073/pnas.94.7.3116. PMC 20331. PMID 9096355. (Retracted. If this is intentional, please replace {{Retracted}} with {{Retracted|intentional=yes}}.)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.