Diwata-1

Diwata-1 (PHL-Microsat-1)
Diwata-1
Diwata-1
Mission type Earth Observation
Operator DOST (through PEDRO)
Tohoku University (through CRESST)
COSPAR ID 1998-067HT
SATCAT no. 41463Edit this on Wikidata
Website http://phl-microsat.upd.edu.ph/
Spacecraft properties
Manufacturer DOST
University of the Philippines
Hokkaido University
Tohoku University
BOL mass 50 kg (110 lb)
Dimensions 55 x 35 x 55 cm
Start of mission
Launch date 03:05:48, March 23, 2016 (UTC) (2016-03-23T03:05:48Z)[1]
Rocket Atlas V 401
Launch site Cape Canaveral SLC-41
Contractor United Launch Alliance
Deployed from ISS
Deployment date 11:45:00, April 27, 2016 (UTC) (2016-04-27T11:45:00Z)[2]
Entered service 22:33:00, April 27, 2016 (UTC) (2016-04-27T22:33:00Z)[3]
Orbital parameters
Regime Low Earth[4]
Inclination 51.6°[5]
Mean motion 4
Velocity 7,000 m/s (16,000 mph)[4]
Instruments
High Precision Telescope (HPT)
Space-borne Multispectral Imager (SMI)
(with Liquid Crystal Tunable Filter (LCTF))
Wide Field Camera (WFC)
Middle Field Camera (MFC)


Diwata-1 mission emblem

Philippine Scientific Earth Observation Microsatellite program

Diwata-1[6] also known as PHL-Microsat-1 is a Philippine microsatellite launched to the International Space Station (ISS) in March 23, 2016, and was deployed into orbit from the ISS in April 27, 2016. It is the first Philippine microsatellite and the first satellite built and designed by Filipinos.[7][8]

Background

Hokkaido University and Tohoku University of Japan initiated a project to send 50 microsatellites into space by 2050. The project will photograph aftermaths of natural disasters, partnering with governments, universities and other organizations based in Bangladesh, Indonesia, Malaysia, Myanmar, Mongolia, Philippines, Thailand, and Vietnam. Two satellites are commissioned for the Philippine government.[9][10]

Diwata-1 is the first satellite of the venture made possible through the Philippine Scientific Earth Observation Microsatellite (PHL-Microsat) Program,[11] a three-year program funded by the Department of Science and Technology (DOST). The program is a collaboration between the University of the Philippines, the DOST-Advanced Science and Technology Institute (DOST-ASTI), and Japan's Tohoku University and Hokkaido University. It was initiated on December 2014 by DOST.[5] The satellite is an updated version of the Raijin-2, which was developed by the two Japanese universities.[12]

Uploading of commands to Diwata-1 and downloading of the images are done in the Philippines' very own Philippine Earth Data Resources Observation Center (PEDRO) ground receiving station. Image processing is also performed locally.

There were two Philippine satellites before Diwata-1, Agila-1 and Agila-2 (later renamed ABS-3) but the former was owned and operated by a non-Philippine firm, PT Pasifik Satelit Nusantara, at the time of its launch and the latter was owned by Mabuhay Satellite Corporation, a private local firm, but later acquired by Asia Broadcast Satellite, a foreign firm.[8]

The government has been availing services from foreign countries for satellite imagery. Carlos Primo David, former Executive Director of the Philippine Council for Industry, Energy and Emerging Technology Research and Development (PCIEERD) called the PHL-Microsat program a "small investment"[8] taking note that in 2013, following the aftermath of Typhoon Haiyan (locally known as Typhoon Yolanda), the government had to pay about ₱56 million for satellite imagery of an area affected by the typhoon dubbed as the "Yolanda Corridor".[8][10] This led to the creation of the PHL-Microsat program.

Etymology

The satellite was named after a type of divine being from Philippine mythology, the diwata.[13]

Development

The turnover of the satellite to JAXA at the Tsukuba Space Center, January 13, 2016

A team of nine Filipino engineers from the DOST-Advanced Science and Technology Institute (ASTI) and the University of the Philippines, dubbed the "Magnificent 9", were responsible for the production of Diwata-1 and collaborated with scientists and engineers from the two Japanese universities.[6][14] They were sent to Japan in October 2015.[15] The assembly and testing of Diwata-1 was completed in December 2015.[16]

Diwata-1 was handed over to the Japan Aerospace Exploration Agency (JAXA) on January 13, 2016, at the Tsukuba Space Center in Tsukuba, Japan.[6][8][16] On January 18, 2016,[17] JAXA sent the satellite to the National Aeronautics and Space Administration (NASA) in the United States after conducting final tests on the satellite.[8]

Component tests, first vibration tests, post-vibration electrical tests, off-gas test, and fit checking were conducted on the satellite. Continuous functionality test of modules and sensors and software optimization were also done on the satellite.[18]

Instruments

Diwata-1 in Japan

Diwata-1 has three scientific instruments: the High Precision Telescope (HPT); Space-borne Multispectral Imager (SMI) with Liquid Crystal Tunable Filter (LCTF); and the Wide Field Camera (WFC). Diwata-1 also has one engineering control instrument, the Middle Field Camera (MFC).[19]

The HPT with a ground sample distance (GSD) of 3 metres (9.8 ft) at 400 kilometres (250 mi) is currently being studied on how it can be used to monitor the extent of damages from natural disasters such as typhoons. It is also equipped with four CCDs for the red, blue, green, and near infrared regions of light.[19]

The SMI with LCTF with a GSD of 80 metres (260 ft) at 400 kilometres (250 mi) is currently being studied on how it can be used in measuring vegetation changes and phytoplankton biomass in Philippine waters. The instrument is equipped with two CCDs for both visible (420–700 nm) and near infrared (650–1050 nm) regions with a 13 nm interval.[19]

The WFC which has a GSD of 7 kilometres (4.3 mi) and a panchromatic CCD with a field view of 1800 × 1340 is used to give visualizations of large-scale cloud patterns and distributions. Diwata-1 can be used to take daily images using the WFC in case of any upcoming large-scale weather disturbances, such as storms or typhoons.

The calibration of the attitude determination algorithm will be handled by the MFC. The instrument is equipped with a colored CCD and expected GSD of 185 metres (607 ft), and will also aid in locating images captured by the HPT and SMI.[19]

Launch and mission

Launch from Cape Canaveral

Atlas V rocket that carried Cygnus CRS OA-6, which delivered Diwata-1 to the ISS.

The launch of Diwata-1 occurred on March 23, 2016, at Cape Canaveral, Florida in the United States. It was a payload of Orbital ATK's Cygnus spacecraft which was launched through the Atlas V rocket as part of a supply mission to the International Space Station (ISS).[20][1][18] Initially, the plan was to launch Diwata-1 through a vehicle by SpaceX, from either California or Florida.[16] Earlier, an orbital slot was secured from JAXA for Diwata-1.[21] Cygnus managed to reach the ISS in March 26. The spacecraft unloaded its cargo, including Diwata-1, to the ISS in the span of two weeks.[22]

Deployment into orbit from the ISS

The Kibo module at the ISS

Diwata-1 was set to be deployed from the International Space Station from the Kibo module.[6][11][23] The satellite was inspected on board the station before its deployment in April for at least 18 months of program activity.[8][21] The deployment mechanism for the satellite was the JEM Small Satellite Orbital Deployer (J-SSOD).[17]

By January 2016, the Kibo module had already deployed 106 small satellites. The Diwata-1 deployment marked the first attempt of the module to deploy a smaller, 50-kg class, microsatellite.[24] The deployment of Diwata-1 was scheduled on April 20 or 21, 2016.[25] Prior to the Cygnus launch, The DOST has made a request to JAXA to deploy the satellite into space between March 21 and April 30, 2016, at the time the ISS is at its highest altitude.[18] The deployment was later announced to take place in April 27, 7:00 p.m (PST).[26] The actual deployment occurred at 7:45 p.m. with British astronaut Tim Peake involved in the operation to put the satellite into orbit.[27]

In the occasion of the deployment, the Philippine flag was raised along with the Japanese flag at the Tsukuba Space Center of the JAXA.[27]

Operation

The mission duration of the satellite is expected to take place for around 20 months,[2] 2 months longer than earlier reported. The engineering team behind Diwata-1 at the Tohoku University was able to receive the satellite's first communication hours later after its deployment from the ISS, at 7:45 p.m. PST.[3]

A ground station based in the Philippines, the Philippine Earth Data Resources Observation (PEDRO) Center, has primary control over the satellite with a command line on the UHF band. PEDRO receives telemetry data sent by Diwata-1 via UHF band and receives images via X-band.[8] The Tohoku University Ground station (CRESST)[5] also has access to the satellite.

Weeks into the satellite's deployment since the Cygnus launch, the setting up of a temporary ground receiving station at the DOST ASTI building was being hastened by DOST units, PCIEERD and Advanced Science and Technology Institute. Diwata-1 was operational at least a week after its deployment into orbit.[25]

The satellite's first images were released in public by the Tohoku University on June 2, 2016, via a Japanese press release. The satellite shot images of Isabela province on the island of Luzon, and parts of Northern Japan.[28]It has also captured images of the coastlines of Palawan, showing signs of siltation on certain parts of the coastline.[29]

Impact

"We hope that this inspires our young children to go into space science; it overcomes a psychological barrier. A lot of kids think of this as just science fiction. But this shows that Filipinos, given enough support, can do what first world countries are doing in space"

Dr. Fidel Nemenzo, UP-Diliman Vice Chancellor for Research and Development on Diwata-1 following its deployment into orbit.[27]

One of the major goals of the PHL-Microsat program, to which Diwata-1 belongs, is to boost the progress on the creation of the Philippine Space Agency.[10] Then-DOST secretary Mario Montejo said that the Diwata-1 may pave the way for development of the local electronics and aerospace industries, which would complement a satellite-building industry.[30]

The University of the Philippines Diliman campus has allocated an area for a space research laboratory for the continued development of microsatellite technology, where the Filipino scientists who were involved in the Diwata-1 project can teach and train local engineers. The facility will be funded by the PCIEERD of DOST.

See also

References

  1. 1 2 Clark, Stephen. "Launch Schedule". spaceflightnow.com. Retrieved 21 March 2016.
  2. 1 2 Suarez, KD (27 April 2016). "Diwata-1, the first Philippine microsatellite, deployed to space". Rappler. Retrieved 27 April 2016.
  3. 1 2 Dimacali, TJ (28 April 2016). "Diwata-1 phones home: 'Maayos ang lahat'" [Diwata-1 phones home: 'Everything's okay']. GMA News. Retrieved 28 April 2016.
  4. 1 2 Suarez, KD (13 January 2016). "One giant leap: PH microsatellite a step closer to launch". Rappler. Retrieved 13 January 2016.
  5. 1 2 3 Sakamoto, Yuji; Gonzalez, Ariston; Espiritu, Juan Paolo; Labrador, John Leur; Oliveros, Julian; Kuwahara, Toshinori; Yoshida, Kazuya (25 May 2015). "Development of the Satellite Bus System for PHL-MICROSAT". Japan Geoscience Union. Chiba. Retrieved 19 January 2016.
  6. 1 2 3 4 Usman, Edd (13 January 2016). "PH makes history, hands over Diwata-1 to JAXA for space launch". Manila Bulletin. Archived from the original on 16 January 2016. Retrieved 13 January 2016.
  7. "First Philippine microsatellite "DIWATA" set to launch". Official Gazette of the Republic of the Philippines. 18 January 2015. Archived from the original on 20 January 2016. Retrieved 7 February 2016.
  8. 1 2 3 4 5 6 7 8 Yee, Jovic (12 January 2015). "1st PH-made satellite set to go into space". Philippine Daily Inquirer. Retrieved 13 January 2016.
  9. "Asian Universities + Asian Nations Go Small... Monitor Natural Disasters w/Network Of Microsatellites". Satnews Daily. 13 January 2016. Retrieved 14 January 2016.
  10. 1 2 3 Usman, Edd (15 January 2016). "DOST says PHL joining Asian 50-microsatellite alliance of 9 countries". Manila Bulletin. Archived from the original on 20 February 2016. Retrieved 15 January 2016.
  11. 1 2 Ranada, Pia (10 March 2015). "Introducing Diwata, the first Philippine-made satellite". Rappler. Retrieved 12 March 2015.
  12. Morimoto, Miki (6 March 2015). "Japanese, Filipino researchers to jointly develop satellites to check typhoon damage". Asahi Shimbun. Archived from the original on 10 March 2015. Retrieved 12 March 2015.
  13. "DOST: First Filipino-made satellite to help agriculture". EdgeDavao. Philippine News Agency. 19 January 2016. Retrieved 19 January 2016.
  14. Usman (31 January 2016). "Yes, Filipinos can!". Manila Bulletin. Archived from the original on 2 February 2016. Retrieved 3 February 2016.
  15. Usman, Edd (27 December 2014). "DOST marks 2014 with 4 int'l awards". Manila Bulletin. Archived from the original on 26 February 2015. Retrieved 26 February 2015.
  16. 1 2 3 Usman, Edd (2 January 2016). "DOST, 2 Japanese universities complete Philippine satellite for launching in space". Manila Bulletin. Archived from the original on 6 January 2016. Retrieved 2 January 2016.
  17. 1 2 "フィリピン政府国産初となる50㎏級超小型衛星「DIWATA-1」の受領完了 ~2016年春、打上げ・初の放出へ。 「きぼう」の船外利用は多様化へ~" [Diwata-1, First Philippine-made 50kg microsatellite, to be launched in Spring of 2016. Kibo module to be used.] (in Japanese). Japan Aerospace Exploration Agency. 22 January 2016. Retrieved 29 January 2016.
  18. 1 2 3 Arayata, Maria Cristina (March 22, 2016). "NASA set to launch Philippines' 1st microsatellite to the ISS". InterAksyon. Philippines News Agency. Archived from the original on March 23, 2016. Retrieved March 22, 2016.
  19. 1 2 3 4 Vergel, Kaye Kristine; Magallon, Benjamin Jonah; Takahashi, Yukihiro; Ishida, Tetsuro; Perez, Gay Jane; Tupas, Mark Edwin; Marciano, Joel (2 November 2015). "Science Missions and Payloads Specifications of Philippines' First Earth-Observation Microsatellite: Diwata" (PDF). Japan Geoscience Union. Retrieved 18 January 2016.
  20. Dimacali, TJ (21 March 2016). "First Pinoy satellite DIWATA-1 to launch on Wednesday". GMA News. Retrieved 21 March 2016.
  21. 1 2 Usman, Edd (12 January 2016). "PH microsatellite set to be launched in April". Manila Bulletin. Retrieved 19 January 2016.
  22. Usman, Edd (28 March 2016). "PH's 'Diwata-1' microsatellite successfully reaches ISS". Manila Bulletin. Archived from the original on 14 April 2016. Retrieved 28 March 2016.
  23. Gonzales, Grace (10 March 2015). "PHL working with Japan to launch first Filipino-made satellite in space". Ang Malaya Net. Retrieved 12 March 2015.
  24. Usman, Edd (31 January 2016). "Deployment of Diwata-1 in space, a first for Japan's Kibo". Manila Bulletin. Archived from the original on 3 March 2016. Retrieved 3 February 2016.
  25. 1 2 Ronda, Rainier Allan (28 March 2016). "First Philippine satellite reaches space station". The Philippine Star. Retrieved 28 March 2016.
  26. Abadilla, Emmie (26 April 2016). "Diwata-1 to launch into space Wednesday". Manila Bulletin. Retrieved 27 April 2016.
  27. 1 2 3 Dimacali, TJ (27 April 2016). "PHL's first satellite Diwata-1 launched into orbit". GMA News. Retrieved 27 April 2016.
  28. "Diwata-1 satellite's first images made public". Rappler. June 2, 2016. Retrieved July 24, 2016.
  29. "'Diwata' warns of siltation in Palawan coastline". Philippine Daily Inquirer. March 8, 2017. Retrieved March 8, 2017.
  30. Ronda, Rainier Allan (18 January 2016). "Diwata-1 may pave way for local satellite-building industry". The Philippine Star. Retrieved 19 January 2016.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.