Alpha Gruis

Alpha Gruis
Diagram showing star positions and boundaries of the Grus constellation and its surroundings
Location of α Gruis (circled)
Observation data
Epoch J2000      Equinox J2000
Constellation Grus
Right ascension 22h 08m 13.98473s[1]
Declination –46° 57 39.5078[1]
Apparent magnitude (V) +1.74[2]
Characteristics
Spectral type B6 V[3]
U−B color index –0.47[2]
B−V color index –0.13[2]
Astrometry
Radial velocity (Rv)+11.8[4] km/s
Proper motion (μ) RA: +126.69[1] mas/yr
Dec.: 147.47[1] mas/yr
Parallax (π)32.29 ± 0.21[1] mas
Distance101.0 ± 0.7 ly
(31.0 ± 0.2 pc)
Absolute magnitude (MV)−0.72[5]
Details
Mass4.0[6] M
Radius3.4[7] R
Luminosity520[8] L
Surface gravity (log g)3.76 ± 0.11[9] cgs
Temperature13,920[10] K
Metallicity [Fe/H]–0.13 ± 0.02[11] dex
Rotational velocity (v sin i)215[12] km/s
Age100[13] Myr
Other designations
Al Na'ir, α Gru, CD47° 14063, FK5 829, GCTP 5339.00, Gl 848.2, HD 209952, HIP 109268, HR 8425, SAO 230992.[14]
Database references
SIMBADdata

Alpha Gruis, Latinized from α Gruis, also named Alnair,[15] is the brightest star in the southern constellation of Grus.

Nomenclature

α Gruis (Latinised to Alpha Gruis) is the star's Bayer designation. (Its first depiction in a celestial atlas was in Johann Bayer's Uranometria of 1603.[16])

It bore the traditional name Alnair or Al Nair (sometimes Al Na'ir in lists of stars used by navigators[17]), from the Arabic al-nayyir [an-nai:r], meaning "the bright one", itself derived from its Arabic name, al-Nayyir min Dhanab al-ḥūt (al-Janūbiyy), "the Bright (star) belongs to the Tail of (the constellation of) the (Southern) Fish".[18] Confusingly, Alnair was also given as the proper name for Zeta Centauri in an astronomical ephemerides in the middle of the 20th century.[19] In 2016, the International Astronomical Union organized a Working Group on Star Names (WGSN)[20] to catalog and standardize proper names for stars. The WGSN approved the name Alnair for this star on 21 August 2016 and it is now so entered in the IAU Catalog of Star Names.[15]

With Beta, Delta, Theta, Iota, and Lambda Gruis, Alnair belonged to Piscis Austrinus in traditional Arabic astronomy.[21]

In Chinese, (), meaning Crane, refers to an asterism consisting of Alpha Gruis, Beta Gruis, Epsilon Gruis, Eta Gruis, Delta Tucanae, Zeta Gruis, Iota Gruis, Theta Gruis, Delta2 Gruis and Mu1 Gruis.[22] Consequently, Alpha Gruis itself is known as 鶴一 (Hè yī, English: First Star of the Crane).[23] The Chinese name gave rise to another English name, Ke.[24]

Properties

Alpha Gruis has a stellar classification of B6 V,[3] although some sources give it a classification of B7 IV.[25] The first classification indicates that this is a B-type star on the main sequence of stars that are generating energy through the thermonuclear fusion of hydrogen at the core. However, a luminosity class of 'IV' would suggest that this is a subgiant star; meaning the supply of hydrogen at its core is becoming exhausted and the star has started the process of evolving away from the main sequence. It has no known companions.[25]

The measured angular diameter of this star, after correcting for limb darkening, is 1.02 ± 0.07 mas.[7] At a parallax-measured distance of 101 light-years (31 parsecs) from Earth, this yields a physical size of 3.4 times the radius of the Sun.[26] It is rotating rapidly, with a projected rotational velocity of about 215 km/s providing a lower bound for the rate of azimuthal rotation along the equator.[12] This star has around four times the Sun's mass and is radiating roughly 520 times the luminosity of the Sun.[8]

The effective temperature of Alpha Gruis's outer envelope is 13,920 K,[10] giving it the blue-white hue characteristic of B-type stars.[27] The abundance of elements other than hydrogen and helium, what astronomers term the metallicity, is about 74% of the abundance in the Sun.[11]

Based on the estimated age and motion, it may be a member of the AB Doradus moving group that share a common motion through space. This group has an age of about 70 million years,[28] which is consistent with α Gruis's 100-million-year[13] estimated age (allowing for a margin of error). The space velocity components of this star in the Galactic coordinate system are [U, V, W] = [–7.0 ± 1.1, –25.6 ± 0.7, –15.5 ± 1.4] km/s.[28]

References

  1. 1 2 3 4 5 van Leeuwen, F. (November 2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357.
  2. 1 2 3 Hoffleit, D.; Warren, W. H. Jr. "HR 8425, database entry". The Bright Star Catalogue (5th Revised (Preliminary) ed.). CDS. Retrieved 5 September 2015.
  3. 1 2 Gray, R. O.; et al. (July 2006), "Contributions to the Nearby Stars (NStars) Project: spectroscopy of stars earlier than M0 within 40 pc-The Southern Sample", The Astronomical Journal, 132 (1): 161–170, arXiv:astro-ph/0603770, Bibcode:2006AJ....132..161G, doi:10.1086/504637
  4. Wilson, Ralph Elmer (1953), "General catalogue of stellar radial velocities", Washington, Carnegie Institution of Washington, Bibcode:1953GCRV..C......0W
  5. Anderson, E.; Francis, Ch. (2012), "XHIP: An extended hipparcos compilation", Astronomy Letters, 38 (5): 331, arXiv:1108.4971, Bibcode:2012AstL...38..331A, doi:10.1134/S1063773712050015.
  6. Malagnini, M. L.; Morossi, C. (November 1990), "Accurate absolute luminosities, effective temperatures, radii, masses and surface gravities for a selected sample of field stars", Astronomy and Astrophysics Supplement Series, 85 (3): 1015–1019, Bibcode:1990A&AS...85.1015M
  7. 1 2 Richichi, A.; Percheron, I.; Khristoforova, M. (February 2005), "CHARM2: An updated Catalog of High Angular Resolution Measurements", Astronomy and Astrophysics, 431 (2): 773–777, Bibcode:2005A&A...431..773R, doi:10.1051/0004-6361:20042039
  8. 1 2 McCarthy, K.; White, R. J. (June 2012), "The Sizes of the Nearest Young Stars", The Astronomical Journal, 143 (6), arXiv:1201.6600, Bibcode:2012AJ....143..134M, doi:10.1088/0004-6256/143/6/134
  9. Fitzpatrick, Edward L.; Massa, Derck (November 1999), "Determining the Physical Properties of the B Stars. I. Methodology and First Results", The Astrophysical Journal, 525 (2): 1011–1023, arXiv:astro-ph/9906257, Bibcode:1999ApJ...525.1011F, doi:10.1086/307944
  10. 1 2 Zorec, J.; et al. (July 2009), "Fundamental parameters of B supergiants from the BCD system. I. Calibration of the (λ_1, D) parameters into Teff", Astronomy and Astrophysics, 501 (1): 297–320, arXiv:0903.5134, Bibcode:2009A&A...501..297Z, doi:10.1051/0004-6361/200811147
  11. 1 2 Niemczura, E. (June 2003), "Metallicities of the SPB stars from the IUE ultraviolet spectra", Astronomy and Astrophysics, 404 (2): 689–700, Bibcode:2003A&A...404..689N, doi:10.1051/0004-6361:20030546 . The fractional abundance relative to the Sun is given by:
    10−0.13 = 0.74, or 74%.
  12. 1 2 Dachs, J.; et al. (March 1981), "Photoelectric scanner measurements of Balmer emission line profiles for southern Be stars. II - A survey for variations", Astronomy and Astrophysics Supplement Series, 43: 427–453, Bibcode:1981A&AS...43..427D
  13. 1 2 Su, K. Y. L.; et al. (December 2006), "Debris Disk Evolution around A Stars", The Astrophysical Journal, 653 (1): 675–689, arXiv:astro-ph/0608563, Bibcode:2006ApJ...653..675S, doi:10.1086/508649
  14. "LTT 8869 -- High proper-motion Star", SIMBAD, Centre de Données astronomiques de Strasbourg, retrieved 2011-12-24
  15. 1 2 "IAU Catalog of Star Names". Retrieved 28 July 2016.
  16. Scalzi, John (2008), Rough Guide to the Universe, Penguin, p. 306, ISBN 1-4053-8370-4
  17. Bowditch, LL.D., Nathaniel (2002) [1802]. "15: Navigational Astronomy". The American Practical Navigator: An Epitome of Navigation (PDF). Bethesda, MD: National Imagery and Mapping Agency. p. 248. ISBN 0-939837-54-4. Retrieved 2016-09-20.
  18. Kunitzsch, P.; Smart, T. (2006), A Dictionary of Modern star Names: A Short Guide to 254 Star Names and Their Derivations (2nd ed.), Cambridge, MA: Sky Publishing, p. 39, ISBN 978-1-931559-44-7
  19. Kunitzsch, P. (1959), Arabische Sternnamen in Europa, Wiesbaden: Otto Harrassowitz, p. 128
  20. IAU Working Group on Star Names (WGSN), International Astronomical Union, retrieved 22 May 2016.
  21. Allen, Richard H. (1963). Star Names: Their Lore and Meaning (reprint ed.). New York, NY: Dover Publications Inc. p. 237. ISBN 0-486-21079-0.
  22. (in Chinese) 中國星座神話, written by 陳久金. Published by 台灣書房出版有限公司, 2005, ISBN 978-986-7332-25-7.
  23. (in Chinese) 香港太空館 - 研究資源 - 亮星中英對照表 Archived 2008-10-25 at the Wayback Machine., Hong Kong Space Museum. Accessed on line November 23, 2010.
  24. Richard Hinckley Allen: Star Names — Their Lore and Meaning: Grus
  25. 1 2 Eggleton, P. P.; Tokovinin, A. A. (September 2008), "A catalogue of multiplicity among bright stellar systems", Monthly Notices of the Royal Astronomical Society, 389 (2): 869–879, arXiv:0806.2878, Bibcode:2008MNRAS.389..869E, doi:10.1111/j.1365-2966.2008.13596.x
  26. Lang, Kenneth R. (2006), Astrophysical formulae, Astronomy and astrophysics library, 1 (3rd ed.), Birkhäuser, ISBN 3-540-29692-1 . The radius (R*) is given by:
  27. "The Colour of Stars", Australia Telescope, Outreach and Education, Commonwealth Scientific and Industrial Research Organisation, December 21, 2004, archived from the original on March 10, 2012, retrieved 2012-01-16
  28. 1 2 Zuckerman, B.; et al. (May 2011), "The Tucana/Horologium, Columba, AB Doradus, and Argus Associations: New Members and Dusty Debris Disks", The Astrophysical Journal, 732 (2): 61, arXiv:1104.0284, Bibcode:2011ApJ...732...61Z, doi:10.1088/0004-637X/732/2/61
  • Kaler, James B., "AL NAIR (Alpha Gruis)", Stars, University of Illinois, retrieved 2011-12-26
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.