< Fractals < Iterations in the complex plane
          The problem is that we are exploring environments based upon irrational numbers through computer machinery which works with finite rationals ! ( Alessandro Rosa )
Rotation around fixed point
Irrational rotation

For Siegel disc [1][2] parameter c :

  • should be on boundary of hyperbolic component of Mandelbrot set ( internal radius = 1)
  • internal angle should be irrational number between 0 and 1 .[3]

Because set of irrationals is uncountable[4] so the number of Julia sets with Siegel disc is infinite.

Definitions

Center

Center of Siegel disc is a irrationally indifferent periodic point.

Mane's theorem :

"... appart from its center, a Siegel disk cannot contain any periodic point, critical point, nor any iterated preimage of a critical or periodic point. On the other hand it can contain an iterated image of a critical point." [5]

Center component of Julia set

In case of c on boundary of main cardioid center component of Julia set is a component containing Siegel disc ( and its center). Critical orbit is a boundary of Siegel disc and center component. All other components are preimages of this component ( see animated image using inverse iterations ).

Radius

Conformal radius

Conformal radius [6][7]

Inner radius

Inner radius of Siegel Disc =

  • radius of inner circle, where inner circle with center at fixed point is the biggest circle inside Siegel Disc.[8]
  • minimal distance between center of Siel Disc and critical orbit

Code for computing internal radius :

Maxima CAS code

Here orbit is a list of complex points z.

f(z,c):=z*z+c $

GiveCriticalOrbit(c,iMax):= 
block(
 ER:2.0, /* Escape Radius */
 z:0+0*%i, /* first point = critical point */
 orbit:[z], 
 if (abs(z)>ER) then return(orbit),
 i:0,
 loop, /*  compute forward orbit */
 z:rectform(f(z,c)),
 orbit:endcons(z,orbit),
 i:i+1,
 if ((abs(z)<ER) and (i<iMax)) then go(loop),
 return(orbit) 
)$

/* find fixed point alfa */
GiveFixed(c):= float(rectform((1-sqrt(1-4*c))/2))$

/* distance between point z and fixed point zf */
GiveDistanceFromCenterTo(z):= abs(z-zf)$

/* inner radius of Siegel Disc ; criticla orbit is a boundary of SD */
GiveInnerRadiusOf(orbit):=lmin(map(GiveDistanceFromCenterTo,orbit))$

/* outer radius of Siegel Disc ; criticla orbit is a boundary of SD */
GiveOuterRadiusOf(orbit):=lmax(map(GiveDistanceFromCenterTo,orbit))$

/*------------ const ---------------------------------*/
c:0.113891513213121  +0.595978335936124*%i; /* fc(z) = z*z + c */
NrPoints:400000;

/* ----------- main ---------------------------------------------------*/
zf:GiveFixed(c); /* fixed point = center of Siegel disc */
orbit:GiveCriticalOrbit(c,NrPoints)$
innerRadius: GiveInnerRadiusOf(orbit) ;
outerRadius: GiveOuterRadiusOf(orbit) ;

C code

double GiveInternalSiegelDiscRadius(complex double c, complex double a)
{ /* compute critical orbit and finds smallest distance from fixed point */
  int i; /* iteration */
  double complex z =0.0; /* critical point */
  
  /* center of Siegel disc  = a */
  
  double d; // distance
  double dMin = 2.0;

  
  for (i=0;i<=40000 ;i++) /* to small number of iMax gives bad result */
    {
      z = z*z + c; 
      /* */
      
     d = cabs(z - a);
     if (d < dMin) dMin = d; /* smallest distance */
    }
    
  return dMin;
}

Outer radius

Outer radius of Siegel Disc = radius of outer circle.

Outer circle with center at fixed point is minimal circle containing Siegel disc.


C code :

double GiveExternalSiegelDiscRadius(complex double c, complex double a)
{ /* compute critical orbit and finds smallest distance from fixed point */
  int i; /* iteration */
  double complex z =0.0; /* critical point */
  
  /* center of Siegel disc  = a */
  
  double d; // distance
  double dMax = 0.0;

  
  for (i=0;i<=40000 ;i++) /* to small number of iMax gives bad result */
    {
      z = z*z + c; 
      /* */
      
     d = cabs(z - a);
     if (d > dMax) dMax = d; /* biggest distance */
    }
    
  return dMax;
}

Folding

Folding in scholaredia[9]

Siegel disk implosion

" ... an arbitrary small change of the multiplier of the Siegel point may lead to an implosion of the Siegel disk - its inner radius collapses to zero " [10]

Examples :

  • from Golden Mean Siegel Disc with rotation number = [0;1,1,1,1,1, ...]= 0.618033988957902 to parabolic Julia set with rotation number (internal angle) = 5/8 = [0;1,1,1,1,1]
  • SEMI-CONTINUITY OF SIEGEL DISKS UNDER PARABOLIC IMPLOSION  : P(n) = [0, 2, 2, n + r] with r = (√5−1)/ 2 , the first three images show the Siegel disk of P(n) for n = 10, 500, 10000, and the last is the virtual Siegel disk of p/q = 2/5 they tend to. Here P(n) > p/q.[11]

Types

for c :

  • on boundary of main cardioid are siegel discs around fixed point alfa
  • on boundary of period n component are periodic Siegel discs around n-periodic points

These Siegel Discs are :

  • bounded (because the Julia set is bounded)
  • not smooth (differentiable) in general

Around fixed point

  • Julia set consist of infinitely many curves bounding open regions
  • maps each region into "larger" one, until the region containing the fixed point is reached
  • inside component containing Siegel disc rotates points on invariant loops around the fixed point[12]

so in other words :

" has infinitely many components. One of these contains the alpha fixed point. It is mapped to itself by . This is the Siegel disk."

"The Siegel disk is one component and it has infinitely many preimages. If you zoom in to z = 0 with large nmax, you shall see that there are two components touching at z=0". ( Wolf Jung )

Visualisation

Visualisation of dynamical plane :

  • critical orbit by forward iteration of critical point
  • Julia set by
    • boundary of center component by drawing of critical orbit
    • whole Julia set by inverse iteration of critical orbit
  • interior
    • whole interior by average velocity by Chris King
    • Siegel disc orbits by forward iteration of point inside or on boundary of Siegel Disc[13]

Average velocity by Chris King

Discrete Velocity of non-attracting Basins and Petals: Compute, for the points that don't escape, the average discrete velocity on the orbit[14]

Optimisation

See also general methods

Trick 1

If point ( z0 or its forward image zn) is inside inner circle then it is interior point.

Examples

Methods

  • Continued fractions
    • t = [3,2,1000,1,.] = 0.28573467254058817026888613062003 . It gives c = -0.096294753554390530825955047963 + 0.648802699422348309293468536773i[15]
  • known aproximations of irrational numbers
    • 1/pi
    • eulers number
    • golden ratio
    • roots of numbers, like
      • squarre roots: sqrt(2), sqrt(3), sqrt(5), sqrt(7), sqrt(8), sqrt(15), sqrt(21), sqrt(35), sqrt(49), SQRT(65), sqrt(99), SQRT(100), SQRT(101), SQRT(121), sqrt(200), sqrt(278),
      • cubic roots, cbrt(3),
    • logarithms, like
  • descendants of above numbers:
    • like 1/pi
    • sum of irrational and rational number : if t is an irrational number and r is a rational the t+r is irrational
  • fast converging series [16]

Sequences

Sequence of Continued fraction:[17]

  • [1, 1, 1, . . .]
  • [1, 1, 1, 20, 1, . . .]
  • [1, 1, 1, 20, 1, 1, 1, 30, 1, . . .]

sequence from Siegel disk to Lea-Fatou flower:

  • plain
  • digitated
  • virtual
  • Leau-Fatou flower
cf(t)tc(t)internal adresscenter zperiodinner Router R
[0; 1, 1, 1,...]0.618033988957902-0.390540870218399-0.586787907346969i-0.368684439039160-0.337745147130762i10.250.4999
[0;3,2,1000,1...].28573467254058820.113891513213121+0.595978335936124i-0.111322907374331+0.487449700270424i1.1414016645283217.5285729063154562

values

  • t = 0.3119660900888915 = [0, 3, 4, 1, 6, 1, 1, 65, 7, 1, 2, 63] ; c = -0.01183223669 + 0.63816572702*%i [18]
  • t = 0.3572354109849235 = [0, 2, 1, 3, 1, 54, 2, 1, 17, 1, 1, 1, 12, 1, 1, 1, 2, 2] ; c = -0.256625459 + 0.6345309*%i
  • t = 0.3573615246360573 = [0, 2, 1, 3, 1, 22, 1, 1, 4, 1, 5, 1, 4, 3, 2, 21] ; c = -0.257341 + 0.634456*%i

Boundary of main cardioid

  • examples by Jay Hill[19]


Parametrization

The boundary of main cardioid is described by 2 simultaneous equations :

  • describing fixed point ( period 1 ) under f
  • describing multiplier[20] ( stability ) of fixed point ( it should be indifferent)

where :

First equation :

Second equation :

As a result one gets function describing relation between parameter c and internal angle t :

It is used for computing :

  • c point of boundary of main cardioid
  • when t is irrational number then filled Julia set has Siegel disc

One can compute boundary point c

of period 1 hyperbolic component ( main cardioid) for given t using

t = atan2(); //   is the argument in radians.
cx = 0.5*cos(t) - 0.25*cos(2*t); 
cy = 0.5*sin(t) - 0.25*sin(2*t); 

New parameter can be computed after increasing t using arbitrary step:

 t += 0.01; //  It is increased by  0.01  so  1/628 turns.
// From the new  t the new parameter c is computed ..

near Liouville numbers


t = 0.7656250596046448 gives :

  • c = 0.294205040086005 -0.448819580822501*i on the main cardioid
  • c = -0.975495621741693 -0.248796172491005*i on the period 2 component
  • c = -0.219419079596579 +0.741123657495634*i on the period 3 component aalong internal ray 1/3
  • c = -1.749557112879525 -0.008859942836393*i on the small period 3 cardioid on the main antenna

where ! denotes factorial.

Image :


Maxima cas code:

f(n) := n^-1 + n^-2 +n^-6 +n^-24;
%i2) f(2);
                                   12845057
(%o2)                              --------
                                   16777216
(%i3) float(f(2));
(%o3)                         0.7656250596046448
(%i4) float(f(3));
(%o4)                          0.445816186560468
(%i5) f(3);
                                 125911658926
(%o5)                            ------------
                                 282429536481

(%i6) f(5);
                               14308929443359376
(%o6)                          -----------------
                               59604644775390625
(%i7) f(6);
                              921453486852538369
(%o7)                         -------------------
                              4738381338321616896
(%i8) f(7);
                             31280196802261814842
(%o8)                        ---------------------
                             191581231380566414401
(%i9) f(8);
                            664100801052053340161
(%o9)                       ----------------------
                            4722366482869645213696
(%i10) 8^24;
(%o10)                      4722366482869645213696


radians

  • 1/(2*pi) = 0.1591549430918953
  • 2/(2*pi) = 0.3183098861837907
  • 3/(2*pi) = 0.477464829275686
  • 4/(2*pi) = 0.6366197723675814
  • 5/(2*pi) = 0.7957747154594768
  • 6/(2*pi) = 0.954929658551372

Images:

the Golden Mean

approximated of golden mean by finite continued fractions

rotation number t is the Golden Mean ( exactly Golden ratio conjugate,[21] compare Julia set for Golden Mean which is disconnected Julia set [22]

Continued_fraction expansion :[23]

In Maxima CAS :


(%i2) a:[0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
(%o2) [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
(%i3) t:cfdisrep(a)
(%o3) 1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1))))))))))))))))))))))
(%i4) float(t)
(%o4) 0.618033988957902
(%i5) l:%e^(2*%pi*%i*t)
(%o5) %e^(-(17711*%i*%pi)/23184)
(%i6) c:(l*(1-l/2))/2
(%o6) ((1-%e^(-(17711*%i*%pi)/23184)/2)*%e^(-(17711*%i*%pi)/23184))/2
(%i7) float(rectform(c))
(%o7) -.5867879078859505*%i-.3905408691260131

so

Compare with :

  • Quadratic Julia sets depicted by combined methods[24]
  • Golden mean Siegel disk by Curtis T McMullen [25]
  • Siegel Disk Fractal by Jim Muth [26]
  • Siegel disk by Davoud Cheraghi[27]
  • a bettter Siegel disk program in Mathematica From Roger Bagula[28]
  • Xander's image [29]
  • Images by Arnaud Chéritat[30]
  • irrational by Faber

Rays landing on the critical point

There are 2 rays landing on the critical point z=0 with angles:[31]

 
 

Here[32]

  

where the powers of 2 form the Fibonacci sequence :[33]

 

These rays are preimages of ray which land on the critical value.

digitated

algorithm goes like this :

  • start with rational number p/q ( q is a number of digits
  • find continous fraction of p/q using for example : wolfram alpha
  • lets choose  2/7 = [0; 3, 2]
  • for n from 0 to 10 compute rotation number = t(n) = [0;3, 2 , 10^n, golden_ratio]
  • for each t compute multiplier m = e^(2*pi*i*t) and  c = (m*(1-m/2))/2,
  • for each c draw critical orbit 

1/2

 [0;2,10^0,  GoldenRatio] = 0.3819660112501051517954131656343618822796908201942371378645513772947395371810975502927927958106088625[34]
 [0;2,10^1,  GoldenRatio] = 0.4775140100981009996157078147705459192853678713412804123092036673992538239565035505055878663397199776
 [0;2,10^2,  GoldenRatio] = 0.4975276418049443654168822249489777631733396751888937557910272646236455872099717190261209452982670182
 [0;2,10^3,  GoldenRatio] = 0.4997502791963461829064406841975638383643273854865268095992275328965717970298619920531024931799175222
 [0;2,10^4,  GoldenRatio] = 0.4999750027947725068093934556288852812751613102402893275180237493139184231871314468863992103480081398
 [0;2,10^5,  GoldenRatio] = 0.4999975000279505372222411883578948194038778053684924551662056284491619191237767514609446551752982620
 [0;2,10^6,  GoldenRatio] ≈ 0.4999997500002795081846878230972820064874630120375394060599983649731088601118927011908445914889153575
 [0;2,10^7,  GoldenRatio] ≈ 0.4999999750000027950846593747720590697092705648336656666550099352279885262457471130077351190950368647
 [0;2,10^8,  GoldenRatio] ≈ 0.4999999975000000279508494062473746989708466400627903143635595029928608488311534417391176743667414601
 [0;2,10^9,  GoldenRatio] = 0.4999999997500000002795084968749737124005323296851266699307427070578490529472905394986264318888387868
 [0;2,10^10, GoldenRatio] ≈ 0.4999999999750000000027950849715622371205464056480586232583076030201151399460674665945145904063730995
 [0;2,10^11, GoldenRatio] ≈ 0.4999999999975000000000279508497184348712051181647153557573019083692657334910230489541137897282568504
 [0;2,10^12, GoldenRatio] ≈ 0.4999999999997500000000002795084971871612120511470579770310133815923588852631868226288826667637222837
 [0;2,10^13, GoldenRatio] ≈ 0.4999999999999750000000000027950849718744246205114671208526574427310807059077461659968395909016599809
 [0;2,10^14, GoldenRatio] ≈ 0.4999999999999975000000000000279508497187470587051146708626348091578511118332834054112155667123629005
 [0;2,10^15, GoldenRatio] ≈ 0.4999999999999997500000000000002795084971874733995511467085917589150515616367008796489196018543201296
 [0;2,10^16, GoldenRatio] ≈ 0.4999999999999999750000000000000027950849718747368080114670859141302328629213837245072986771954833911
 [0;2,10^17, GoldenRatio] ≈ 0.4999999999999999975000000000000000279508497187473708926146708591409564368639443385654331302200729603
 [0;2,10^18, GoldenRatio] ≈ 0.4999999999999999997500000000000000002795084971874737117386467085914095297794629164357828552071705414
 [0;2,10^19, GoldenRatio] ≈ 0.4999999999999999999750000000000000000027950849718747371201989670859140952943357115116628413693411086
 [0;2,10^20, GoldenRatio] ≈ 0.4999999999999999999975000000000000000000279508497187473712048021708591409529430112233513589149747868
 ...
 [0;2] = 1/2              = 0.5

using quad double precision :

t(0)  = 3.81966011250105151795413165634361882279690820194237137864551377e-01 ; c = -3.90540870218400050669762600713798485817583715938583500790716491e-01 ; 5.86787907346968751196714643055715840096745752123320842032245424e-01
t(1)  = 4.77514010098100999615707814770545919285367871341280412309203667e-01 ; c = -7.35103725789203166246364354183070697092321099215970115885457098e-01 ; 1.40112549815936743590686010452273467218741353649054870130630558e-01
t(2)  = 4.97527641804944365416882224948977763173339675188893755791027265e-01 ; c = -7.49819025417749776930986763368388660297294249313031793877713589e-01 ; 1.55327228158391795314525351457527867568101147692293037994954915e-02
t(3)  = 4.99750279196346182906440684197563838364327385486526809599227533e-01 ; c = -7.49998153581339423261635407668242134664913541791449158951684018e-01 ; 1.56904047490965613194389295941701415441031256575211288282884094e-03
t(4)  = 4.99975002794772506809393455628885281275161310240289327518023749e-01 ; c = -7.49999981498629125645545136832080395069079925634197165921129604e-01 ; 1.57062070991569266952536106210409130728490029437750411952649155e-04
t(5)  = 4.99997500027950537222241188357894819403877805368492455166205628e-01 ; c = -7.49999999814949055379035496840776829777984829652802229165703441e-01 ; 1.57077876479293075511736069683515881947782844720535147967721515e-05
t(6)  = 4.99999750000279508184687823097282006487463012037539406059998365e-01 ; c = -7.49999999998149453312747388186444210086067957518121660969151546e-01 ; 1.57079457059156244743576144811256589754652192800174232944684020e-06
t(7)  = 4.99999975000002795084659374772059069709270564833665666655009935e-01 ; c = -7.49999999999981494495885914313759501577872560098720076587742563e-01 ; 1.57079615117453182906803046090425827728536858759594155863970088e-07
t(8)  = 4.99999997500000027950849406247374698970846640062790314363559503e-01 ; c = -7.49999999999999814944921617531908891370473818724298060108792696e-01 ; 1.57079630923285982648802540286825950414334929521039394902627564e-08
t(9)  = 4.99999999750000000279508496874973712400532329685126669930742707e-01 ; c = -7.49999999999999998149449178933702694145524879491347408142864355e-01 ; 1.57079632503869293681972526129998193269783324874397448954896142e-09
t(10) = 4.99999999975000000002795084971562237120546405648058623258307603e-01 ; c = -7.49999999999999999981494491752095410030080568840077963364830374e-01 ; 1.57079632661927625095878938346134344643704271149725816320948648e-10
t(11) = 4.99999999997500000000027950849718434871205118164715355757301908e-01 ; c = -7.49999999999999999999814944917483712483337770357969922549543000e-01 ; 1.57079632677733458240375473417333652732358282974043728923647563e-11
t(12) = 4.99999999999750000000000279508497187161212051147057977031013382e-01 ; c = -7.49999999999999999999998149449174799883216409502184216102177862e-01 ; 1.57079632679314041554856185862662707966424239622019267641300599e-12
t(13) = 4.99999999999975000000000002795084971874424620511467120852657443e-01 ; c = -7.49999999999999999999999981494491747961590547126303840172625197e-01 ; 1.57079632679472099886304567696577418001577729533565273081497266e-13
t(14) = 4.99999999999997500000000000027950849718747058705114670862634809e-01 ; c = -7.49999999999999999999999999814944917479578663854294268739087328e-01 ; 1.57079632679487905719449408985862706763478042275954257084690447e-14
t(15) = 4.99999999999999750000000000000279508497187473399551146708591759e-01 ; c = -7.49999999999999999999999999998149449174795749396925973912562169e-01 ; 1.57079632679489486302763893145850173816965190682509858763917154e-15
t(16) = 4.99999999999999975000000000000002795084971874736808011467085914e-01 ; c = -7.49999999999999999999999999999981494491747957456727642770350276e-01 ; 1.57079632679489644361095341562159509904086589961983101670245908e-16
t(17) = 4.99999999999999997500000000000000027950849718747370892614670859e-01 ; c = -7.49999999999999999999999999999999814944917479574530034810734727e-01 ; 1.57079632679489660166928486403793549406616456447514036426396814e-17
t(18) = 4.99999999999999999750000000000000000279508497187473711738646709e-01 ; c = -7.49999999999999999999999999999999998149449174795745263106490379e-01 ; 1.57079632679489661747511800887956984415807620355720412842525869e-18
t(19) = 4.99999999999999999975000000000000000002795084971874737120198967e-01 ; c = -7.49999999999999999999999999999999999981494491747957452593823287e-01 ; 1.57079632679489661905570132336373328227316118501557102010628498e-19
t(20) = 4.99999999999999999997500000000000000000027950849718747371204802e-01 ; c = -7.49999999999999999999999999999999999999814944917479574525900991e-01 ; 1.57079632679489661921375965481214962611572862167871366529561451e-20
        5.00000000000000000000000000000000000000000000000000000000000000e-01   c = -7.50000000000000000000000000000000000000000000000000000000000000e-01 ; 0.00000000000000000000000000000000000000000000000000000000000000e+00

1/3

Infolding Siegel Disk near 1/3
1/3 = [0; 3] = 0.3333333..... = 0.(3)
/* Maxima CAS batch file */ 
kill(all)$
remvalue(all)$

/* a =  [1, 1, ...] =  golden ratio */
g: float((1+sqrt(5))/2)$

GiveT(n):= float(cfdisrep([0,3,10^n,g]))$

GiveC(t):= block(
  [l, c],
  l:%e^(2*%pi*%i*t),
  c : (l*(1-l/2))/2,
  c:float(rectform(c)),
  return(c)
)$

compile(all)$

for n:0 step 1 thru 10 do (
  t:GiveT(n),
  c:GiveC(t),
  print("n=" ,n ," ; t= ", t , "; c = ", c) 
 );

The result :

n= 0   t=  0.276393202250021    c = 0.5745454151066983 %i + 0.1538380639536643 
n= 1   t=  0.3231874668087892   c = 0.6469145331346998 %i - 0.07039249652637808 
n= 2   t=  0.3322326933513446   c = 0.649488031636116 %i - 0.1190170769366243 
n= 3   t=  0.3332223278292314   c = 0.6495187369145559 %i - 0.1243960357918423 
n= 4   t=  0.3333222232791965   c = 0.6495190496732967 %i - 0.1249395463818514 
n= 5   t=  0.3333322222327929   c = 0.6495190528066728 %i - 0.1249939540657306 
n= 6   t=  0.3333332222223279   c = 0.6495190528380125 %i - 0.1249993954008478 
n= 7   t=  0.3333333222222233   c = 0.6495190528383257 %i - 0.1249999395400275 
n= 8   t=  0.3333333322222222   c = 0.6495190528383289 %i - 0.1249999939540021 
n= 9   t=  0.3333333332222222   c = 0.649519052838329 %i - 0.1249999993954 
n= 10  t=  0.3333333333222222   c = 0.649519052838329 %i - 0.1249999999395399

(%i1) a:[0,3,a,g];
(%o1)                          [0, 3, a, g]
(%i2) cfdisrep(a);
                                    1
(%o2)                           ---------
                                      1
                                3 + -----
                                        1
                                    a + -
                                        g
(%i3)

quad precision (t and c ):

// git@gitlab.com:adammajewski/InfoldingSiegelDisk_in_c_1over3_quaddouble.git

t(0)  = 2.76393202250021030359082633126872376455938164038847427572910275e-01 c = 1.53838063953664121728826496636884090757364247198001213740163411e-01  ; 5.74545415106698547533205192239966882171974656527110206599567294e-01
t(1)  = 3.23187466808789167460075188398563024584074865168574811248120429e-01 c = -7.03924965263779817446805013170440359580350303484669206412737432e-02 ; 6.46914533134699876497054948648970463828561836818357035393585013e-01
t(2)  = 3.32232693351344645328281111249254263489588693253128095562021379e-01 c = -1.19017076936624259031145944667596002534849695014545153950004772e-01 ; 6.49488031636116063199566861137419722741268462810784951116992269e-01
t(3)  = 3.33222327829231396180972123516749255293978654448636072108442295e-01 c = -1.24396035791842227723833496314974550377900499387491577355907843e-01 ; 6.49518736914555954950215798854805983039885153673988260646103979e-01
t(4)  = 3.33322223279196467461199806968881974980654735721758806121437081e-01 c = -1.24939546381851514024915251452349793356883503222467666248987991e-01 ; 6.49519049673296680160381595728499835459227600854334414827754792e-01
t(5)  = 3.33332222232792869679683559108320427563171464137271516297451542e-01 c = -1.24993954065730675441065991629838614047426783311966520549106346e-01 ; 6.49519052806672859063863722773813069312955136848755592503084124e-01
t(6)  = 3.33333222222327929601887145303917917465162347855208962292566660e-01 c = -1.24999395400848041352293443820430989442841091304288844173462574e-01 ; 6.49519052838012418008903728036348898528045582108441153259758357e-01
t(7)  = 3.33333322222223279296923970287377310413140932425289152909012301e-01 c = -1.24999939540027553391850682937180513243494903336945859380511500e-01 ; 6.49519052838325819396349608234642964505989043061737603462233217e-01
t(8)  = 3.33333332222222232792970144802560581866962241709924341887457124e-01 c = -1.24999993954002182831269818316294274223873134947476282441764677e-01 ; 6.49519052838328953416022146474675036126754173503570601306155105e-01
t(9)  = 3.33333333222222222327929702353125377874576632652638574699840874e-01 c = -1.24999999395400212558047347868208906283402972461774034404632366e-01 ; 6.49519052838328984756224669944909300404586792219705302525018521e-01
t(10) = 3.33333333322222222223279297024436353559326388564904699626466712e-01 c = -1.24999999939540021198553937965723010802762347867693302140297851e-01 ; 6.49519052838328985069626700977700316581410665652851539203616381e-01
t(11) = 3.33333333332222222222232792970245268635374696979418341612961499e-01 c = -1.24999999993954002119282885827879858604573185189849864410972761e-01 ; 6.49519052838328985072760721293826315500672008735227141791647866e-01
t(12) = 3.33333333333222222222222327929702453591453528488135105883396848e-01 c = -1.24999999999395400211922563503100579972022557444713095237600026e-01 ; 6.49519052838328985072792061496993373578630511176383107487756736e-01
t(13) = 3.33333333333322222222222223279297024536819635066408216696619311e-01 c = -1.24999999999939540021192199099513183456854230374819467960534760e-01 ; 6.49519052838328985072792374899025049957498862929395598811798211e-01
t(14) = 3.33333333333332222222222222232792970245369101450445609885075510e-01 c = -1.24999999999993954002119219337443349599800479106023686175774584e-01 ; 6.49519052838328985072792378033045366727085635213738283716661855e-01
t(15) = 3.33333333333333222222222222222327929702453691919604237626654112e-01 c = -1.24999999999999395400211921928019255272520717007610023985861823e-01 ; 6.49519052838328985072792378064385569894787301025348531521608111e-01
t(16) = 3.33333333333333322222222222222223279297024536920101142157794353e-01 c = -1.24999999999999939540021192192744674730377477910267401190215182e-01 ; 6.49519052838328985072792378064698971926464323481553400821453061e-01
t(17) = 3.33333333333333332222222222222222232792970245369201916521359471e-01 c = -1.24999999999999993954002119219273894965069001852640340429175752e-01 ; 6.49519052838328985072792378064702105946781093711913538281273390e-01
t(18) = 3.33333333333333333222222222222222222327929702453692020070313376e-01 c = -1.24999999999999999395400211921927383771427212725879688582341355e-01 ; 6.49519052838328985072792378064702137286984261414222937744638416e-01
t(19) = 3.33333333333333333322222222222222222223279297024536920201608234e-01 c = -1.24999999999999999939540021192192738319891924397994124922164696e-01 ; 6.49519052838328985072792378064702137600386293091246037537360833e-01
t(20) = 3.33333333333333333332222222222222222222232792970245369202016987e-01 c = -1.24999999999999999993954002119219273831416684471053474052374312e-01 ; 6.49519052838328985072792378064702137603520313408016268541086146e-01
1/3   = 3.33333333333333333333333333333333333333333333333333333333333333e-01 c = -1.25000000000000000000000000000000000000000000000000000000000000e-01 ; 6.49519052838328985072792378064702137603551970178892735520927617e-01

9/13

Example from scholarpedia[35]

fpprec:60;
a:[4,4,1,2,4,4,4,4,1,1,1,1,1,1,1,1,1];
b:cfdisrep(a);
c:bfloat(b);
e0:bfloat(cfdisrep([0,1,2,4,4,c]));
e1:bfloat(cfdisrep([0,1,2,4,4,10,c]));
e2:bfloat(cfdisrep([0,1,2,4,4,10^2,c]));
e3:bfloat(cfdisrep([0,1,2,4,4,10^3,c]));
e4:bfloat(cfdisrep([0,1,2,4,4,10^4,c]));
e5:bfloat(cfdisrep([0,1,2,4,4,10^5,c]));
e6:bfloat(cfdisrep([0,1,2,4,4,10^6,c]));
e7:bfloat(cfdisrep([0,1,2,4,4,10^7,c]));
e8:bfloat(cfdisrep([0,1,2,4,4,10^8,c]));
e9:bfloat(cfdisrep([0,1,2,4,4,10^9,c]));
e10:bfloat(cfdisrep([0,1,2,4,4,10^10,c]));
d01:e0-e1;
d12:e1-e2;
d23:e2-e3;
d34:e3-e4;
d45:e4-e5;
d56:e5-e6;
d67:e6-e7;
d78:e7-e8;
d89:e8-e9;
d910:e9-e10;

plot2d( [discrete, [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [ e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10] ]);
plot2d( [discrete, [ 1, 2, 3, 4, 5, 6, 7, 8, 9,10], [ d01, d12, d23, d34, d45, d56, d67, d78, d89, d910] ]);
 	

result :

/* http://maxima-online.org/?inc=r972897020*/
(%i1) fpprec:60;
(%o1)                                 60
(%i2) a:[4,4,1,2,4,4,4,4,1,1,1,1,1,1,1,1,1];
(%o2)         [4, 4, 1, 2, 4, 4, 4, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1]
(%i3) b:cfdisrep(a);
                                         1
(%o3)  4 + -------------------------------------------------------------
                                           1
           4 + ---------------------------------------------------------
                                             1
               1 + -----------------------------------------------------
                                               1
                   2 + -------------------------------------------------
                                                 1
                       4 + ---------------------------------------------
                                                   1
                           4 + -----------------------------------------
                                                     1
                               4 + -------------------------------------
                                                       1
                                   4 + ---------------------------------
                                                         1
                                       1 + -----------------------------
                                                           1
                                           1 + -------------------------
                                                             1
                                               1 + ---------------------
                                                               1
                                                   1 + -----------------
                                                                 1
                                                       1 + -------------
                                                                   1
                                                           1 + ---------
                                                                     1
                                                               1 + -----
                                                                       1
                                                                   1 + -
                                                                       1
(%i4) c:bfloat(b);
(%o4)   4.21317492083944457390374624758406097076199745041327978287391b0
(%i5) e0:bfloat(cfdisrep([0,1,2,4,4,c]));
(%o5)  6.90983385919269333377918690283855111536837789999636063622128b-1
(%i6) e1:bfloat(cfdisrep([0,1,2,4,4,10,c]));
(%o6)  6.90940653590858345205900333693231459583929903277216782489572b-1
(%i7) e2:bfloat(cfdisrep([0,1,2,4,4,10^2,c]));
(%o7)  6.90912381108070743953290526690429251279660195160237673633147b-1
(%i8) e3:bfloat(cfdisrep([0,1,2,4,4,10^3,c]));
(%o8)  6.90909421331077674912831355964859580252020147075327146840293b-1
(%i9) e4:bfloat(cfdisrep([0,1,2,4,4,10^4,c]));
(%o9)  6.90909123965376225147306218871548821073377014383362752163859b-1
(%i10) e5:bfloat(cfdisrep([0,1,2,4,4,10^5,c]));
(%o10) 6.90909094214860373154103745626419162194365585020091374566415b-1
(%i11) e6:bfloat(cfdisrep([0,1,2,4,4,10^6,c]));
(%o11) 6.90909091239669264887898182284536032143262445829248943506691b-1
(%i12) e7:bfloat(cfdisrep([0,1,2,4,4,10^7,c]));
(%o12) 6.90909090942148758764580793509997058314465248663422318011972b-1
(%i13) e8:bfloat(cfdisrep([0,1,2,4,4,10^8,c]));
(%o13) 6.90909090912396694199216055201332263713180254323741379104146b-1
(%i14) e9:bfloat(cfdisrep([0,1,2,4,4,10^9,c]));
(%o14)  6.9090909090942148760314918534473410035349593667510644807155b-1
(%i15) e10:bfloat(cfdisrep([0,1,2,4,4,10^10,c]));
(%o15) 6.90909090909123966942147194332785516326702737819678667743891b-1
(%i16) d01:e0-e1;
(%o16) 4.27323284109881720183565906236519529078867224192811325562048b-5
(%i17) d12:e1-e2;
(%o17) 2.82724827876012526098070028022083042697081169791088564253857b-5
(%i18) d23:e2-e3;
(%o18) 2.95977699306904045917072556967102764004808491052679285309819b-6
(%i19) d34:e3-e4;
(%o19) 2.97365701449765525137093310759178643132691964394676434841921b-7
(%i20) d45:e4-e5;
(%o20) 2.97505158519932024732451296588790114293632713775974431973635b-8
(%i21) d56:e5-e6;
(%o21) 2.97519110826620556334188313005110313919084243105972446795396b-9
(%i22) d67:e6-e7;
(%o22) 2.97520506123317388774538973828797197165826625494718990624414b-10
(%i23) d78:e7-e8;
(%o23) 2.97520645653647383086647946012849943396809389078262402933403b-11
(%i24) d89:e8-e9;
(%o24) 2.97520659606686985659816335968431764863493103259592529156942b-12
(%i25) d910:e9-e10;
(%o25) 2.97520661001991011948584026793198855427780327658967717649496b-13

These Siegel disks have 13 digits. SO it will be near t=n/13, probably :

 

this number is irreducible and it's decimal expansion has period 6 [36]

Numerical comutations goes near :

 

It is irreducible fraction . It's decimal expansion has period 2 [37]

Important numbers :

 8/13  = 0.6153846153846154 = [0; 1, 1, 1, 1, 2]
 38/55 = 0.690909090909090(90) = [0; 1, 2, 4, 4]
 9/13  = 0.692307692307(692307) = [0; 1, 2, 4]

QUADRATIC SIEGEL DISKS WITH SMOOTH BOUNDARIES

Example by XAVIER BUFF AND ARNAUD CHERITAT[38]

α = ( 5 + 1)/2 = [1, 1, 1, 1, . . .],
α(1) = [1, 1, 1, 1, 1, 1, 25, 1, 1, 1, . . .]
α(2) = [1, 1, 1, 1, 1, 1, 25, 1010 , 1, 1, 1, . . .]

2/7

rotation number t is :[39]

In Maxima CAS one can compute it :

(%i2) kill(all)
(%o0) done
(%i1)  a:[0,3,2,1000,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
(%o1)  [0,3,2,1000,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
(%i2) t:cfdisrep(a)
(%o2) (1)/(3+(1)/(2+(1)/(1000+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+ (1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
(%i3) float(t)
(%o3) .2857346725405882
(%i4) l:%e^(2*%pi*%i*t)
(%o4) %e^((2*%i*%pi)/(3+(1)/(2+(1)/(1000+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
(%i5) c:(l*(1-l/2))/2
(%o5) ((1-(%e^((2*%i*%pi)/(3+(1)/(2+(1)/(1000+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))/(2))*%e^((2*%i*%pi)/(3+(1)/(2+(1)/(1000+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+(1)/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))/(2)
(%i6) float(rectform(c))
(%o6) .5959783359361234*%i+.1138915132131216

So

t = .2857346725405882
c = 0.113891513213121  +0.595978335936124 i

How one can find limit of [3,2,1000,1,...] ?

Here is explanation of Bill Wood

"I don't know if Maxima knows much about the algebra of continued fractions, but it can be of some help hacking out the manipulation details of a derivation. A most useful fact is that

   [a1, a2, a3, ...] = a1 + 1/[a2, a3, ...]

provided the continued fraction converges. If we apply that three times by hand to [3, 2, 1000, 1, 1, ...] we obtain

   3 + 1/(2 + 1/(1000 + 1/[1, 1, ...]))

Now it is known that [1, 1, ...] converges to the Golden Ratio = (1+sqrt(5))/2. So now we can use Maxima as follows:

 (%i20) 3+(1/(2+(1/(1000+(1/((1+sqrt(5))/2))))));
                                    1
 (%o20)                    ---------------------- + 3
                                  1
                          ------------------ + 2
                               2
                          ----------- + 1000
                          sqrt(5) + 1
 (%i21) factor(%o13);
                              7003 sqrt(5) + 7017
 (%o21)                        -------------------
                              2001 sqrt(5) + 2005
 (%i22) %o21,numer;
 (%o22)                         3.499750279196346

You set a to [0, 3, 2, 1000, 1, 1, ...], which by our useful fact must be the reciprocal of [3, 2, 1000, 1, 1, ...], and indeed the reciprocal of 3.499750279196346 is 0.2857346725405882, which is what your float(t) evaluates to, so we seem to get consistent results.

If all of the continued fractions for the rotation numbers exhibited on the link you provided do end up repeating 1 forever then the method I used above can be used to determine their limits as ratios of linear expressions in sqrt(5)." Bill Wood

Check fraction:[40]

 2/7 = [0; 3, 2] = 0.285714285714285714285714285714285714285714285714285714285... = 0.(28571)
/* Maxima CAS batch file */ 
kill(all)$
remvalue(all)$

/* a =  [1, 1, ...] =  golden ratio */
g: float((1+sqrt(5))/2)$

GiveT(n):= float(cfdisrep([0,3,2,10^n,g]))$

GiveC(t):= block(
  [l, c],
  l:%e^(2*%pi*%i*t),
  c : (l*(1-l/2))/2,
  c:float(rectform(c)),
  return(c)

)$

compile(all)$

 for n:0 step 1 thru 10 do (
t:GiveT(n),
c:GiveC(t),
print("n=", n , " ; t= ", t, " ; c = ", c)
);

and result :

"n="" "0" "" ; t= "" "0.2956859994078892" "" ; c = "" "0.6153124581224951*%i+0.06835556662164869" "
"n="" "1" "" ; t= "" "0.2875617458610296" "" ; c = "" "0.599810068302661*%i+0.1057522049785167" "
"n="" "2" "" ; t= "" "0.285916253540726" "" ; c = "" "0.5963646240901801*%i+0.1130872227062027" "
"n="" "3" "" ; t= "" "0.2857346725405881" "" ; c = "" "0.5959783359361234*%i+0.1138915132131216" "
"n="" "4" "" ; t= "" "0.2857163263170416" "" ; c = "" "0.5959392401496606*%i+0.1139727184036316" "
"n="" "5" "" ; t= "" "0.2857144897937824" "" ; c = "" "0.5959353258460209*%i+0.1139808467588366" "
"n="" "6" "" ; t= "" "0.2857143061224276" "" ; c = "" "0.5959349343683512*%i+0.1139816596727942" "
"n="" "7" "" ; t= "" "0.2857142877551018" "" ; c = "" "0.5959348952201112*%i+0.1139817409649742" "
"n="" "8" "" ; t= "" "0.2857142859183673" "" ; c = "" "0.5959348913052823*%i+0.1139817490942002" "
"n="" "9" "" ; t= "" "0.2857142857346939" "" ; c = "" "0.5959348909137995*%i+0.1139817499071228" "
"n="" "10" "" ; t= "" "0.2857142857163265" "" ; c = "" "0.5959348908746511*%i+0.1139817499884153" "

or using quad double precision ( qd library) :

./a.out
t(0)  = 2.95685999407889202537083517598191479880016272621355940112392033e-01
t(1)  = 2.87561745861029587995763349374215634699576366286473943622953355e-01
t(2)  = 2.85916253540726005296290351777281930430489555597203400050155169e-01
t(3)  = 2.85734672540588170268886130620030074831025799037914834916050614e-01
t(4)  = 2.85716326317041655001121670485871240052920659174284332597727197e-01
t(5)  = 2.85714489793782460278353122604001584582831972498394265344044955e-01
t(6)  = 2.85714306122427620319960416932943500595980573209849938259909447e-01
t(7)  = 2.85714287755101827223406574888790339883583192331314008460721020e-01
t(8)  = 2.85714285918367344802846109454092778340593443209054635310671634e-01
t(9)  = 2.85714285734693877529661113954572642424219379874139361821960174e-01
t(10) = 2.85714285716326530612031305016895554055165716643985018539739541e-01
t(11) = 2.85714285714489795918365211009352427817161964062263710683311655e-01
2/7   = 2.85714285714285714285714285714285714285714285714285714285714286e-01

2/9

(%i7) cf(2/9);
(%o7)                              [0, 4, 2]
(%i8) cf(2/9 + 0.1);
(%o8)                           [0, 3, 9, 1, 2]
(%i9) cf(2/9 + 0.01);
(%o9)                        [0, 4, 3, 3, 1, 3, 4]
(%i10) cf(2/9 + 0.001);
(%o10)                      [0, 4, 2, 11, 1, 9, 8]
(%i11) cf(2/9 + 0.0001);
(%o11)                        [0, 4, 2, 123, 81]
(%i12) cf(2/9 + 0.00001);
(%o12)                      [0, 4, 2, 1234, 8, 10]
(%i13) cf(2/9 + 0.000001);
(%o13)                   [0, 4, 2, 12345, 4, 3, 1, 4]
(%i14) cf(2/9 + 0.0000001);
(%o14)                    [0, 4, 2, 123456, 2, 1, 8]
(%i15) cf(2/9 + 0.00000001);
(%o15)                       [0, 4, 2, 1234567, 2]
(%i16) cf(2/9 + 0.000000001);
(%o16)                        [0, 4, 2, 12345678]
(%i17) cf(2/9 + 0.0000000001);
(%o17)                       [0, 4, 2, 123456806]
(%i18) cf(2/9 + 0.00000000001);
(%o18)                       [0, 4, 2, 1234571860]
(%i19) cf(2/9 + 0.000000000001);
(%o19)                      [0, 4, 2, 12345935203]
(%i20) cf(2/9 + 0.0000000000001);
(%o20)                      [0, 4, 2, 123453937153]
(%i21) cf(2/9 + 0.00000000000001);
(%o21)                     [0, 4, 2, 1234539371537]
(%i22) cf(2/9 + 0.000000000000001);
(%o22)                     [0, 4, 2, 12794317123211]
(%i23) 

Questions

  • is it possible to find function which maps circle to Siegel disc ?
  • what happens between virtual Siegel disk and parabolic critical orbit ?

Further reading

References

  1. wikipedia : siegel disc
  2. encyclopedia of math : Siegel disc ( see discrete case )
  3. More Fun With Irrational Internal Angles by Faber McMullen
  4. wikipedia : Irrational number
  5. Siegel disks by Xavier Buff and Arnaud Ch ́ritat e Univ. Toulouse Roma, April 2009
  6. wikipedia : Conformal radius
  7. scholarpedia : Quadratic Siegel disks
  8. scholarpedia : Quadratic_Siegel_disks
  9. Image InfoldingSiegelDisk.gif from Scholarpedia
  10. Computability of Julia sets by Mark Braverman, Michael Yampolsky
  11. SEMI-CONTINUITY OF SIEGEL DISKS UNDER PARABOLIC IMPLOSION by ARNAUD CHERITAT
  12. Fractal Geometry Mathematical Foundations and Applications, 2nd Edition Kenneth Falconer
  13. A tutorial on the visualization of forward orbits associated with Siegel disks in the quadratic Julia sets by G.Todd Miller
  14. Combined Methods of Depicting Julia Sets by Chris King
  15. More Fun With Irrational Internal Angles by Faber
  16. Irrationality of Fast Converging Series of Rational Numbers By Daniel Duverney
  17. NON-COMPUTABLE JULIA SETS by M. BRAVERMAN, M. YAMPOLSKY
  18. Mandelbrot Sequences and Orbits by Stefan Forcey
  19. Jay Hill : JuliaSetsOrbitsSiegelDisks.txt
  20. multiplier in wikipedia
  21. Golden ratio at wikipedia
  22. Golden Ratio Julia Set video by fractal
  23. wikipedia : Continued_fraction
  24. Combined Methods of Depicting Julia Sets by Chris King
  25. Golden mean Siegel disk by Curtis T McMullen
  26. Siegel disc by Jim Muth
  27. Siegel discs by Davoud Cheraghi
  28. a bettter Siegel disk program in Mathematica From Roger Bagula
  29. Xander's blog
  30. Galerie II : Dynamique holomorphe et analyse complexe by Arnaud Chéritat
  31. OLD AND NEW ON QUADRATIC SIEGEL DISKS by SAEED ZAKERI
  32. Rotation Sets and Polynomial Dynamics by Zakeri
  33. integer sequence id=A000045
  34. wolframalpha : continued+fraction[0;2,1,GoldenRatio]
  35. Infolding Siegel Disk by Arnaud Chéritat
  36. wolfram alpha : 9/13
  37. wolfram alpha : 38/55
  38. SIEGEL DISKS WITH SMOOTH BOUNDARIES ́ ARTUR AVILA, XAVIER BUFF, AND ARNAUD CHERITAT
  39. Some examples of quadratic polynomial Siegel disks by Davoud Cheraghi
  40. wolfram alpha : 2/7
  41. An Introduction To Small Divisors by S. Marmi
  • Local connectivity of some Julia sets containing a circle with an irrational rotation. / Petersen, Carsten Lunde. In: Acta Mathematica, Vol. 177, No. 2, 1996, p. 163-224.
  • Building blocks for quadratic Julia sets. Article in Transactions of the American Mathematical Society 351(3):1171-1201 · January 1999 DOI: 10.1090/S0002-9947-99-02346-6
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.