< Fractals
            "Do not worry about your problems with mathematics, I assure you mine are far greater." Albert Einstein

Notation

A continued fraction[1] is an expression of the form

where :

  • and are either integers, rational numbers, real numbers, or complex numbers.
  • , etc., are called the coefficients or terms of the continued fraction

Variants or types :

  • If for all the expression is called a simple continued fraction.
  • If the expression contains a finite number of terms, it is called a finite continued fraction.
  • If the expression contains an infinite number of terms, it is called an infinite continued fraction.[2]

Thus, all of the following illustrate valid finite simple continued fractions:

Examples of finite simple continued fractions
Formula Numeric Remarks
All integers are a degenerate case
Simplest possible fractional form
First integer may be negative
First integer may be zero

simple continued fractions

Finite

Notation :

 

Every finite continued fraction represents a rational number :

  

Infinite

Notation :

 

Every infinite continued fraction is irrational number  :

 

The rational number obtained by limited number of terms in a continued fraction is called a n-th convergent

  

because sequence of rational numbers converges to irrational number

 

In other words irrational number is the limit of convergent sequence.

Nominator p and denominator q can be found using the relevant recursive relation:

so



Key words :

  • the sequence of continued fraction convergents of irrational number
  • sequence of the convergents
  • continued fraction expansion
  • rational aproximation of irrational number
  • a best rational approximation to a real number r by rational number p/q

How to use it in computer programs

Maxima CAS

In Maxima CAS one have cf and float(cfdisrep())

(%i2) a:[0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
(%o2) [0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]
(%i3) t:cfdisrep(a)
(%o3) 1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1+1/1))))))))))))))))))))))
(%i4) float(t)
(%o4) 0.618033988957902

To compute n-th convergent:

(%i10) a;
(%o10) [0, 3, 2, 1000, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
(%i11) a3: listn(a,3);
(%o11) listn([0, 3, 2, 1000, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
                                                                         1], 3)
(%i12) a3: firstn(a,3);
(%o12)                             [0, 3, 2]
(%i13) cf3:cfdisrep(a3);
                                       1
(%o13)                               -----
                                         1
                                     3 + -
                                         2
(%i14) r3:ratsimp(cf3);
                                       2
(%o14)                                 -
                                       7
(%i15) 

Examples

  • number theory
  • continued fractions based functions over the complex plan[3][4]
  • " a continued fraction may be regarded as a sequence of Möbius maps" Alan F. Beardone[5]

See also

Help

References

  1. Continued Fractions and Dynamics by Stefano Isola
  2. Darren C. Collins, Continued Fractions, MIT Undergraduate Journal of Mathematics,
  3. continued fractions based functions over the complex plane
  4. continued-fractions-with-applications by L. Lorentzen H. Waadeland
  5. Continued Fractions, Discrete Groups and Complex Dynamics by Alan F. Beardone. Beardone, A.F. Comput. Methods Funct. Theory (2001) 1: 535. https://doi.org/10.1007/BF03321006
This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.