Water cycle

The water cycle, also known as the hydrologic cycle or the hydrological cycle, describes the continuous movement of water on, above and below the surface of the Earth. The mass of water on Earth remains fairly constant over time but the partitioning of the water into the major reservoirs of ice, fresh water, saline water and atmospheric water is variable depending on a wide range of climatic variables. The water moves from one reservoir to another, such as from river to ocean, or from the ocean to the atmosphere, by the physical processes of evaporation, condensation, precipitation, infiltration, surface runoff, and subsurface flow. In doing so, the water goes through different forms: liquid, solid (ice) and vapor.

Diagram of the Water Cycle
The water cycle

The water cycle involves the exchange of energy, which leads to temperature changes. When water evaporates, it takes up energy from its surroundings and cools the environment. When it condenses, it releases energy and warms the environment. These heat exchanges influence climate.

The evaporative phase of the cycle purifies water which then replenishes the land with freshwater. The flow of liquid water and ice transports minerals across the globe. It is also involved in reshaping the geological features of the Earth, through processes including erosion and sedimentation. The water cycle is also essential for the maintenance of most life and ecosystems on the planet.

Description

The sun, which drives the water cycle, heats water in oceans and seas. Water evaporates as water vapor into the air. Some ice and snow sublimates directly into water vapor. Evapotranspiration is water transpired from plants and evaporated from the soil. The water molecule H
2
O
has smaller molecular mass than the major components of the atmosphere, nitrogen and oxygen, N
2
and O
2
, hence is less dense. Due to the significant difference in density, buoyancy drives humid air higher. As altitude increases, air pressure decreases and the temperature drops (see Gas laws). The lower temperature causes water vapor to condense into tiny liquid water droplets which are heavier than the air, and fall unless supported by an updraft. A huge concentration of these droplets over a large space up in the atmosphere become visible as cloud. Some condensation is near ground level, and called fog.

Atmospheric circulation moves water vapor around the globe; cloud particles collide, grow, and fall out of the upper atmospheric layers as precipitation. Some precipitation falls as snow or hail, sleet, and can accumulate as ice caps and glaciers, which can store frozen water for thousands of years. Most water falls back into the oceans or onto land as rain, where the water flows over the ground as surface runoff. A portion of runoff enters rivers in valleys in the landscape, with streamflow moving water towards the oceans. Runoff and water emerging from the ground (groundwater) may be stored as freshwater in lakes. Not all runoff flows into rivers; much of it soaks into the ground as infiltration. Some water infiltrates deep into the ground and replenishes aquifers, which can store freshwater for long periods of time. Some infiltration stays close to the land surface and can seep back into surface-water bodies (and the ocean) as groundwater discharge. Some groundwater finds openings in the land surface and comes out as freshwater springs. In river valleys and floodplains, there is often continuous water exchange between surface water and ground water in the hyporheic zone. Over time, the water returns to the ocean, to continue the water cycle.

Processes

Many different processes lead to movements and phase changes in water
Precipitation
Condensed water vapor that falls to the Earth's surface. Most precipitation occurs as rain, but also includes snow, hail, fog drip, graupel, and sleet.[1] Approximately 505,000 km3 (121,000 cu mi) of water falls as precipitation each year, 398,000 km3 (95,000 cu mi) of it over the oceans.[2] The rain on land contains 107,000 km3 (26,000 cu mi) of water per year and a snowing only 1,000 km3 (240 cu mi).[3] 78% of global precipitation occurs over the ocean.[4]
Canopy interception
The precipitation that is intercepted by plant foliage eventually evaporates back to the atmosphere rather than falling to the ground.
Snowmelt
The runoff produced by melting snow.
Runoff
The variety of ways by which water moves across the land. This includes both surface runoff and channel runoff. As it flows, the water may seep into the ground, evaporate into the air, become stored in lakes or reservoirs, or be extracted for agricultural or other human uses.
Infiltration
The flow of water from the ground surface into the ground. Once infiltrated, the water becomes soil moisture or groundwater.[5] A recent global study using water stable isotopes, however, shows that not all soil moisture is equally available for groundwater recharge or for plant transpiration.[6]
Subsurface flow
The flow of water underground, in the vadose zone and aquifers. Subsurface water may return to the surface (e.g. as a spring or by being pumped) or eventually seep into the oceans. Water returns to the land surface at lower elevation than where it infiltrated, under the force of gravity or gravity induced pressures. Groundwater tends to move slowly and is replenished slowly, so it can remain in aquifers for thousands of years.
Evaporation
The transformation of water from liquid to gas phases as it moves from the ground or bodies of water into the overlying atmosphere.[7] The source of energy for evaporation is primarily solar radiation. Evaporation often implicitly includes transpiration from plants, though together they are specifically referred to as evapotranspiration. Total annual evapotranspiration amounts to approximately 505,000 km3 (121,000 cu mi) of water, 434,000 km3 (104,000 cu mi) of which evaporates from the oceans.[2] 86% of global evaporation occurs over the ocean.[4]
Sublimation
The state change directly from solid water (snow or ice) to water vapor by passing the liquid state.[8]
Deposition
This refers to changing of water vapor directly to ice.
Advection
The movement of water through the atmosphere.[9] Without advection, water that evaporated over the oceans could not precipitate over land.
Condensation
The transformation of water vapor to liquid water droplets in the air, creating clouds and fog.[10]
Transpiration
The release of water vapor from plants and soil into the air.
Percolation
Water flows vertically through the soil and rocks under the influence of gravity.
Plate tectonics
Water enters the mantle via subduction of oceanic crust. Water returns to the surface via volcanism.

The water cycle involves many of these processes.

Residence times

Average reservoir residence times[11]
ReservoirAverage residence time
Antarctica 20,000 years
Oceans 3,200 years
Glaciers 20 to 100 years
Seasonal snow cover 2 to 6 months
Soil moisture 1 to 2 months
Groundwater: shallow 100 to 200 years
Groundwater: deep 10,000 years
Lakes (see lake retention time) 50 to 100 years
Rivers 2 to 6 months
Atmosphere 9 days

The residence time of a reservoir within the hydrologic cycle is the average time a water molecule will spend in that reservoir (see adjacent table). It is a measure of the average age of the water in that reservoir.

Groundwater can spend over 10,000 years beneath Earth's surface before leaving. Particularly old groundwater is called fossil water. Water stored in the soil remains there very briefly, because it is spread thinly across the Earth, and is readily lost by evaporation, transpiration, stream flow, or groundwater recharge. After evaporating, the residence time in the atmosphere is about 9 days before condensing and falling to the Earth as precipitation.

The major ice sheets – Antarctica and Greenland – store ice for very long periods. Ice from Antarctica has been reliably dated to 800,000 years before present, though the average residence time is shorter.[12]

In hydrology, residence times can be estimated in two ways. The more common method relies on the principle of conservation of mass and assumes the amount of water in a given reservoir is roughly constant. With this method, residence times are estimated by dividing the volume of the reservoir by the rate by which water either enters or exits the reservoir. Conceptually, this is equivalent to timing how long it would take the reservoir to become filled from empty if no water were to leave (or how long it would take the reservoir to empty from full if no water were to enter).

An alternative method to estimate residence times, which is gaining in popularity for dating groundwater, is the use of isotopic techniques. This is done in the subfield of isotope hydrology.

Changes over time

Time-mean precipitation and evaporation as a function of latitude as simulated by an aqua-planet version of an atmospheric GCM (GFDL's AM2.1) with a homogeneous “slab-ocean” lower boundary (saturated surface with small heat capacity), forced by annual mean insolation.
Global map of annual mean evaporation minus precipitation by latitude-longitude

The water cycle describes the processes that drive the movement of water throughout the hydrosphere. However, much more water is "in storage" for long periods of time than is actually moving through the cycle. The storehouses for the vast majority of all water on Earth are the oceans. It is estimated that of the 332,500,000 mi3 (1,386,000,000 km3) of the world's water supply, about 321,000,000 mi3 (1,338,000,000 km3) is stored in oceans, or about 97%. It is also estimated that the oceans supply about 90% of the evaporated water that goes into the water cycle.[13]

During colder climatic periods, more ice caps and glaciers form, and enough of the global water supply accumulates as ice to lessen the amounts in other parts of the water cycle. The reverse is true during warm periods. During the last ice age, glaciers covered almost one-third of Earth's land mass with the result being that the oceans were about 122 m (400 ft) lower than today. During the last global "warm spell," about 125,000 years ago, the seas were about 5.5 m (18 ft) higher than they are now. About three million years ago the oceans could have been up to 50 m (165 ft) higher.[13]

The scientific consensus expressed in the 2007 Intergovernmental Panel on Climate Change (IPCC) Summary for Policymakers is for the water cycle to continue to intensify throughout the 21st century, though this does not mean that precipitation will increase in all regions.[14] In subtropical land areas  places that are already relatively dry  precipitation is projected to decrease during the 21st century, increasing the probability of drought. The drying is projected to be strongest near the poleward margins of the subtropics (for example, the Mediterranean Basin, South Africa, southern Australia, and the Southwestern United States). Annual precipitation amounts are expected to increase in near-equatorial regions that tend to be wet in the present climate, and also at high latitudes. These large-scale patterns are present in nearly all of the climate model simulations conducted at several international research centers as part of the 4th Assessment of the IPCC. There is now ample evidence that increased hydrologic variability and change in climate has and will continue to have a profound impact on the water sector through the hydrologic cycle, water availability, water demand, and water allocation at the global, regional, basin, and local levels.[15] Research published in 2012 in Science based on surface ocean salinity over the period 1950 to 2000 confirm this projection of an intensified global water cycle with salty areas becoming more saline and fresher areas becoming more fresh over the period:[16]

Fundamental thermodynamics and climate models suggest that dry regions will become drier and wet regions will become wetter in response to warming. Efforts to detect this long-term response in sparse surface observations of rainfall and evaporation remain ambiguous. We show that ocean salinity patterns express an identifiable fingerprint of an intensifying water cycle. Our 50-year observed global surface salinity changes, combined with changes from global climate models, present robust evidence of an intensified global water cycle at a rate of 8 ± 5% per degree of surface warming. This rate is double the response projected by current-generation climate models and suggests that a substantial (16 to 24%) intensification of the global water cycle will occur in a future 2° to 3° warmer world.[17]

An instrument carried by the SAC-D satellite Aquarius, launched in June, 2011, measured global sea surface salinity.[16][18]

Glacial retreat is also an example of a changing water cycle, where the supply of water to glaciers from precipitation cannot keep up with the loss of water from melting and sublimation. Glacial retreat since 1850 has been extensive.[19]

Relationship between impervious surfaces and surface runoff

Human activities that alter the water cycle include:

Effects on climate

The water cycle is powered from solar energy. 86% of the global evaporation occurs from the oceans, reducing their temperature by evaporative cooling.[20] Without the cooling, the effect of evaporation on the greenhouse effect would lead to a much higher surface temperature of 67 °C (153 °F), and a warmer planet.

Aquifer drawdown or overdrafting and the pumping of fossil water increases the total amount of water in the hydrosphere, and has been postulated to be a contributor to sea-level rise.[21]

Effects on biogeochemical cycling

While the water cycle is itself a biogeochemical cycle, flow of water over and beneath the Earth is a key component of the cycling of other biogeochemicals.[22] Runoff is responsible for almost all of the transport of eroded sediment and phosphorus from land to waterbodies.[23] The salinity of the oceans is derived from erosion and transport of dissolved salts from the land. Cultural eutrophication of lakes is primarily due to phosphorus, applied in excess to agricultural fields in fertilizers, and then transported overland and down rivers. Both runoff and groundwater flow play significant roles in transporting nitrogen from the land to waterbodies.[24] The dead zone at the outlet of the Mississippi River is a consequence of nitrates from fertilizer being carried off agricultural fields and funnelled down the river system to the Gulf of Mexico. Runoff also plays a part in the carbon cycle, again through the transport of eroded rock and soil.[25]

Slow loss over geologic time

The hydrodynamic wind within the upper portion of a planet's atmosphere allows light chemical elements such as Hydrogen to move up to the exobase, the lower limit of the exosphere, where the gases can then reach escape velocity, entering outer space without impacting other particles of gas. This type of gas loss from a planet into space is known as planetary wind.[26] Planets with hot lower atmospheres could result in humid upper atmospheres that accelerate the loss of hydrogen.[27]

History of hydrologic cycle theory

Floating land mass

In ancient times, it was widely thought that the land mass floated on a body of water, and that most of the water in rivers has its origin under the earth. Examples of this belief can be found in the works of Homer (circa 800 BCE).

Hebrew Bible

In the ancient near east, Hebrew scholars observed that even though the rivers ran into the sea, the sea never became full. Some scholars conclude that the water cycle was described completely during this time in this passage: "The wind goeth toward the south, and turneth about unto the north; it whirleth about continually, and the wind returneth again according to its circuits. All the rivers run into the sea, yet the sea is not full; unto the place from whence the rivers come, thither they return again" (, KJV).[28] Scholars are not in agreement as to the date of Ecclesiastes, though most scholars point to a date during the time of King Solomon, son of David and Bathsheba, "three thousand years ago,[28] there is some agreement that the time period is 962–922 BCE.[29] Furthermore, it was also observed that when the clouds were full, they emptied rain on the earth (). In addition, during 793–740 BCE a Hebrew prophet, Amos, stated that water comes from the sea and is poured out on the earth (, ).[30]

In the Biblical Book of Job, dated between 7th and 2nd centuries BCE,[29] there is a description of precipitation in the hydrologic cycle,[28] "For he maketh small the drops of water: they pour down rain according to the vapour thereof; Which the clouds do drop and distil upon man abundantly" (, KJV).

Precipitation and percolation

In the Adityahridayam (a devotional hymn to the Sun God) of Ramayana, a Hindu epic dated to the 4th century BCE, it is mentioned in the 22nd verse that the Sun heats up water and sends it down as rain. By roughly 500 BCE, Greek scholars were speculating that much of the water in rivers can be attributed to rain. The origin of rain was also known by then. These scholars maintained the belief, however, that water rising up through the earth contributed a great deal to rivers. Examples of this thinking included Anaximander (570 BCE) (who also speculated about the evolution of land animals from fish[31]) and Xenophanes of Colophon (530 BCE).[32] Chinese scholars such as Chi Ni Tzu (320 BCE) and Lu Shih Ch'un Ch'iu (239 BCE) had similar thoughts.[33] The idea that the water cycle is a closed cycle can be found in the works of Anaxagoras of Clazomenae (460 BCE) and Diogenes of Apollonia (460 BCE). Both Plato (390 BCE) and Aristotle (350 BCE) speculated about percolation as part of the water cycle.

Precipitation alone

Up to the time of the Renaissance, it was thought that precipitation alone was insufficient to feed rivers, for a complete water cycle, and that underground water pushing upwards from the oceans were the main contributors to river water. Bartholomew of England held this view (1240 CE), as did Leonardo da Vinci (1500 CE) and Athanasius Kircher (1644 CE).

The first published thinker to assert that rainfall alone was sufficient for the maintenance of rivers was Bernard Palissy (1580 CE), who is often credited as the "discoverer" of the modern theory of the water cycle. Palissy's theories were not tested scientifically until 1674, in a study commonly attributed to Pierre Perrault. Even then, these beliefs were not accepted in mainstream science until the early nineteenth century.[34]

See also

  • Bioprecipitation
  • Drought
  • Ecohydrology
  • Flood  Overflow of water that submerges land that is not normally submerged
  • Moisture advection
  • Moisture recycling
  • Planetary boundaries
  • Water use
  • Deep water cycle  Movement of water in the deep Earth
  • Global meteoric water line

References

  1. "precipitation | National Snow and Ice Data Center". nsidc.org. Archived from the original on 2018-01-16. Retrieved 2018-01-15.
  2. "The Water Cycle". Dr. Art's Guide to Planet Earth. Archived from the original on 2011-12-26. Retrieved 2006-10-24.CS1 maint: unfit url (link)
  3. "Estimated Flows of Water in the Global Water Cycle". www3.geosc.psu.edu. Archived from the original on 2017-11-07. Retrieved 2018-01-15.
  4. "Salinity | Science Mission Directorate". science.nasa.gov. Archived from the original on 2018-01-15. Retrieved 2018-01-15.
  5. "Hydrologic Cycle". Northwest River Forecast Center. NOAA. Archived from the original on 2006-04-27. Retrieved 2006-10-24.
  6. Evaristo, Jaivime; Jasechko, Scott; McDonnell, Jeffrey J. (2015-09-03). "Global separation of plant transpiration from groundwater and streamflow". Nature. 525 (7567): 91–94. Bibcode:2015Natur.525...91E. doi:10.1038/nature14983. ISSN 0028-0836. PMID 26333467.
  7. "evaporation | National Snow and Ice Data Center". nsidc.org. Archived from the original on 2018-01-16. Retrieved 2018-01-15.
  8. "sublimation | National Snow and Ice Data Center". nsidc.org. Archived from the original on 2018-01-16. Retrieved 2018-01-15.
  9. "advection | National Snow and Ice Data Center". nsidc.org. Archived from the original on 2018-01-16. Retrieved 2018-01-15.
  10. "condensation | National Snow and Ice Data Center". nsidc.org. Archived from the original on 2018-01-16. Retrieved 2018-01-15.
  11. "Chapter 8: Introduction to the Hydrosphere". 8(b) the Hydrologic Cycle. PhysicalGeography.net. Archived from the original on 2016-01-26. Retrieved 2006-10-24.
  12. Jouzel, J.; Masson-Delmotte, V.; Cattani, O.; Dreyfus, G.; Falourd, S.; Hoffmann, G.; Minster, B.; Nouet, J.; Barnola, J. M. (2007-08-10). "Orbital and millennial Antarctic climate variability over the past 800,000 years" (PDF). Science. 317 (5839): 793–96. Bibcode:2007Sci...317..793J. doi:10.1126/science.1141038. ISSN 1095-9203. PMID 17615306.
  13. "The Water Cycle summary". USGS Water Science School. Archived from the original on 2018-01-16. Retrieved 2018-01-15.
  14. Alley, Richard; et al. (February 2007). "Climate Change 2007: The Physical Science Basis" (PDF). International Panel on Climate Change. Archived from the original (PDF) on February 3, 2007.
  15. Vahid, Alavian; Qaddumi, Halla Maher; Dickson, Eric; Diez, Sylvia Michele; Danilenko, Alexander V.; Hirji, Rafik Fatehali; Puz, Gabrielle; Pizarro, Carolina; Jacobsen, Michael (November 1, 2009). "Water and climate change : understanding the risks and making climate-smart investment decisions". Washington, DC: World Bank. pp. 1–174. Archived from the original on 2017-07-06.
  16. Gillis, Justin (April 26, 2012). "Study Indicates a Greater Threat of Extreme Weather". The New York Times. Archived from the original on 2012-04-26. Retrieved 2012-04-27.
  17. Paul J. Durack; Susan E. Wijffels & Richard J. Matear (27 April 2012). "Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000" (PDF). Science (Submitted manuscript). 336 (6080): 455–58. Bibcode:2012Sci...336..455D. doi:10.1126/science.1212222. PMID 22539717.
  18. Vinas, Maria-Jose (June 6, 2013). "NASA's Aquarius Sees Salty Shifts". NASA. Archived from the original on 2017-05-16. Retrieved 2018-01-15.
  19. "Retreat of Glaciers in Glacier National Park". www.usgs.gov. Archived from the original on 2018-01-04. Retrieved 2018-01-15.
  20. "Water Cycle | Science Mission Directorate". science.nasa.gov. Archived from the original on 2018-01-15. Retrieved 2018-01-15.
  21. "Rising sea levels attributed to global groundwater extraction". University of Utrecht. 2014-12-05. Archived from the original on May 11, 2011. Retrieved February 8, 2011.
  22. "Biogeochemical Cycles". The Environmental Literacy Council. Archived from the original on 2015-04-30. Retrieved 2006-10-24.
  23. "Phosphorus Cycle". The Environmental Literacy Council. Archived from the original on 2016-08-20. Retrieved 2018-01-15.
  24. "Nitrogen and the Hydrologic Cycle". Extension Fact Sheet. Ohio State University. Archived from the original on 2006-09-01. Retrieved 2006-10-24.
  25. "The Carbon Cycle". Earth Observatory. NASA. 2011-06-16. Archived from the original on 2006-09-28. Retrieved 2006-10-24.
  26. Nick Strobel (June 12, 2010). "Planetary Science". Archived from the original on September 17, 2010. Retrieved September 28, 2010.
  27. Rudolf Dvořák (2007). Extrasolar Planets. Wiley-VCH. pp. 139–40. ISBN 978-3-527-40671-5. Retrieved 2009-05-05.
  28. Morris, Henry M. (1988). Science and the Bible (Trinity Broadcasting Network ed.). Chicago, IL: Moody Press. p. 15.
  29. Metzger, Bruce M.; Coogan, Michael D. (1993). The Oxford Companion to the Bible. New York, NY: Oxford University Press. pp. 369. ISBN 978-0195046458.
  30. Merrill, Eugene H.; Rooker, Mark F.; Grisanti, Michael A. (2011). The World and the Word. Nashville, TN: B&H Academic. p. 430. ISBN 9780805440317.
  31. Kazlev, M.Alan. "Palaeos: History of Evolution and Paleontology in science, philosophy, religion, and popular culture : Pre 19th Century". Archived from the original on 2014-03-02.
  32. James H. Lesher. "Xenophanes' Scepticism" (PDF). pp. 9–10. Archived from the original (PDF) on 2013-07-28. Retrieved 2014-02-26.
  33. The Basis of Civilization – water Science?. International Association of Hydrological Science. 2004. ISBN 9781901502572 via Google Books.
  34. James C.I. Dodge. Concepts of the hydrological Cycle. Ancient and modern (PDF). International Symposium OH
    2
    'Origins and History of Hydrology', Dijon, May 9–11, 2001. Archived (PDF) from the original on 2014-10-11. Retrieved 2014-02-26.

Further reading

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.