ORX

Orx is an open-source, portable, lightweight, plug-in-based, data-driven and easy to use 2D-oriented game engine written in C.

ORX
Developer(s)orx-project.org
Stable release
1.11[1] / May 10, 2020 (2020-05-10)
Written inC
PlatformCross-platform
TypeGame engine
Licensezlib license
Websiteorx-project.org

It runs on Windows (MinGW and Visual Studio versions), Linux (X86 and X86-64), Mac OS X (10.7-10.13, X86 and X86-64), iOS and Android.

General information

Orx provides a complete game creation framework including a 3D scene graph, hardware accelerated 2D rendering, animation, input, sound, physics and much more.

Its main goals are to allow fast game prototyping and creation.[2]

Orx is published under Zlib license.

Features

Despite being written in C, Orx has an object oriented design with a plugin architecture. This allows its kernel to be cross-platform and delegates hardware- and OS-dependent tasks to plugins. Most of these plugins are based on other open-source libraries, such as GLFW, SDL and Box2D.

Build files are provided for GCC makefiles, Visual Studio (2015, 2017 & 2019), Codelite, Code::Blocks and Xcode.

Orx contains most of the common game engine features
  • automated sprite rendering using 3D hardware acceleration allowing: translations, anisotropic scale, rotation, transparency (alpha blending), coloring (multiply, add and subtract blends), tiling and mirroring
  • advanced resource management
  • Multiple Render Targets (MRT) and advance compositing support
  • geometric display primitives and textured mesh rendering
  • camera/viewport system allowing multiple views on one screen with camera translations, zooms and rotations
  • 3D scene graph used for object positioning, allowing grouped translations, rotations and scales
  • sound and music with volume, pitch and loop control
  • collision detection and rigid body physics and joints
  • animation system
  • event management
  • custom fragment (pixel) shader support
  • unicode support
  • custom bitmap font rendering
  • real time CPU profiler
  • interactive "debug" console
  • multi-monitor support
  • clipboard support
It also provides more unusual features[3]
  • object creation is data driven: managing resources requires very little code, everything is controlled through configuration files
  • during dev phases, resources can be automatically hotloaded at runtime upon modification on disk, shortening drastically iteration times
  • a clock system: this allows the user to keep time consistency everywhere, giving him the ability of doing local or global time stretching
  • an animation chaining graph: animation transitions are defined in a graph, this allows the code to request only the final target animation; all transitions will be automated depending on the starting animation
  • a custom animation event system: allows easy synchronization with parts of animations
  • a visual FX system: config-based combination of curves of sine, sawtooth and linear shapes that can be plugged on object properties: color, alpha, position, translation or rotation
  • a powerful resource system: allows users to easily abstract resource access and work with separated development files as well as packed ones for release builds, or even use different sets of resources on different platforms, without having to change a line of code [4]
  • an automated differential scrolling: depth scaling and differential scrolling is controlled through config files, allowing differential parallax scrolling on any number of planes
  • a powerful configuration system: featuring inheritance, direct random control, encryption/decryption, filtered save and history reload. This allows the user to tweak almost everything without having to change a single line of code
  • a spawning system: this allows the user to easily create weapon bullets or, combined with the visual FX system, elaborate visual graphic effects
  • an easy UI object positioning system: helps supporting different aspect ratio and provides easy picking/selection framework
  • a generic input system: allows users to use any kind of controllers (mouse, joystick, keyboard, touch, accelerometer, ...) through an abstract layer. The user asks for input status using plain names, bindings being done in config files or on the fly for user input customization, for example
  • simple scripting via a combination of timelines and commands
  • multi-threading support with asynchronous resources loading and hotloading support
The current list of WIP features that will be added in the future
  • 3D rendering support
  • network support

See also

References

  1. "Download page - GitHub". orx-project.org. Retrieved 10 May 2020.
  2. "How to Learn Orx".
  3. "About Orx". Retrieved 2009-03-08.
  4. "A custom ZIP archive support".
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.