List of largest stars

Below is a list of the largest stars currently known, ordered by radius. The unit of measurement used is the radius of the Sun (approximately 695,700 km; 432,288 mi).

Relative sizes of the planets in the Solar System and several well-known stars:
  1. Mercury < Mars < Venus < Earth
  2. Earth < Neptune < Uranus < Saturn < Jupiter
  3. Jupiter < Wolf 359 < Sun < Sirius A
  4. Sirius A < Pollux < Arcturus < Aldebaran
  5. Aldebaran < Rigel A < Antares A < Betelgeuse - though Betelgeuse is now thought to be smaller than Antares[1]
  6. Betelgeuse < Mu Cephei < VV Cephei A < VY Canis Majoris

The exact order of this list is incomplete, as great uncertainties remain, especially when deriving various parameters used in calculations, such as stellar luminosity and effective temperature. Often stellar radii can only be expressed as an average or within a large range of values. Values for stellar radii vary significantly in sources and throughout the literature, mostly as the boundary of the very tenuous atmosphere (opacity) greatly differs depending on the wavelength of light in which the star is observed.

Radii of several stars can be directly obtained by stellar interferometry. Other methods can use lunar occultations or from eclipsing binaries, which can be used to test other indirect methods of finding true stellar size. Only a few useful supergiant stars can be occulted by the Moon, including Antares and Aldebaran. Examples of eclipsing binaries are Epsilon Aurigae, VV Cephei, and HR 5171.

Caveats

The extreme red hypergiant star VY Canis Majoris compared to the Sun and Earth's orbit.

Complex issues exist in determining the true radii of the largest stars, which in many cases do display significant errors. The following lists are generally based on various considerations or assumptions; these include:

  • Largest stars are usually expressed in units of the solar radius (R), where 1.00 R equals 695,700 kilometres.
  • Stellar radii or diameters are usually derived only approximately using Stefan-Boltzmann law for the deduced stellar luminosity and effective surface temperature.
  • Stellar distances, and their errors, for most, remain uncertain or poorly determined.
  • Many supergiant stars have extended atmospheres, and many are embedded within opaque dust shells, making their true effective temperatures highly uncertain.
  • Many extended supergiant atmospheres also significantly change in size over time, regularly or irregularly pulsating over several months or years as variable stars. This makes adopted luminosities poorly known and may significantly change the quoted radii.
  • Other direct methods for determining stellar radii rely on lunar occultations or from eclipses in binary systems. This is only possible for a very small number of stars.

Extragalactic large stars

In this list are some examples of more distant extragalactic stars, which may have slightly different properties and natures than the currently largest-known stars in the Milky Way:

  • Some red supergiants in the Magellanic Clouds are suspected to have slightly different limiting temperatures and luminosities. Such stars may exceed accepted limits by undergoing large eruptions or change their spectral types over just a few months.
  • A survey of the Magellanic Clouds has catalogued many red supergiants, where many of them exceed 700 R (490,000,000 km; 3.3 AU; 300,000,000 mi). Largest of these is about 1,200-1,300 R, though a few recent discoveries show stars reaching sizes of >1,500.[2]

List

List of the largest stars
Star name Solar radii
(Sun = 1)
Method[lower-alpha 1] Notes
Stephenson 2-18 2,158[3] L/Teff A red supergiant located within the massive open cluster Stephenson 2, where 25 other red supergiants are also located. An older estimate suggests a much smaller size of 474 R[4]
HV 888 (WOH S140) 1,974[5] L/Teff Located in the Large Magellanic Cloud. An older estimate suggests a smaller size of 1,353 R[6]
Orbit of Saturn1,940-2,169Reported for reference
V538 Carinae 1,870[1] AD May be one of the largest stars known. Although its size is disputed.
WOH G641,788[5] L/TeffLocated in the Large Magellanic Cloud
IRAS 05280-6910 (LMC 582)1,738[7]L/TeffLocated in the Large Magellanic Cloud
Westerlund 1-261,530-1,580[8] L/TeffVery uncertain parameters for an unusual star with strong radio emission. The spectrum is variable but apparently the luminosity is not.
RSGC1-F021,499[9]-1,549[3]L/Teff
RSGC1-F011,435[9]-1,551[3]L/Teff
VY Canis Majoris1,420[10]ADVY CMa is described as the largest star in the Milky Way although galactic red supergiants above are possibly larger but they have less accurate radius estimates.[11] Older estimates originally estimated the radius of VY CMa to be above 3,000 R,[12] or as little as 600 R.[13] The 1,420 R measure has a margin of error of ±120 R.[10]
AH Scorpii1,411[14]ADAH Sco is a variable by nearly 3 magnitudes in the visual range, and an estimated 20% in total luminosity. The variation in diameter is not clear because the temperature also varies.
WOH S281 1,376[5] L/Teff
IRAS 04509-69221,360[15]L/TeffLocated in the Large Magellanic Cloud
W Cephei 1,320[1] AD
SMC 181361,310[2]L/TeffLocated in the Small Magellanic Cloud.
V774 Sagittarii 1,310[1] AD
WOH S279 1,298[5] L/Teff
SW Cephei 1,298[1] AD
RW Cygni 1,273[1] AD
SP77 46-44 (WOH S341)1,258[6]L/TeffLocated in the Large Magellanic Cloud
Westerlund 1-2371,245[3]L/TeffRed supergiant within the Westerlund 1 super star cluster.
HV 2255 (WOH S97) 1,235[5] L/Teff
SMC 50921,220[2]L/Teff
SP77 31-18 (WOH S72) 1,211[5] L/Teff
IRC -104141,200[16]L/TeffIRC -10414 is a rare red supergiant companion to WR 114 that has a bow shock.
LMC 1754641,200[2]L/TeffLocated in the Large Magellanic Cloud.
LMC 1357201,200[2]L/TeffLocated in the Large Magellanic Cloud
SMC 698861,190[2]L/Teff
NML Cygni1,183[17]L/TeffNML Cyg is calculated to be between 1,640 R and 2,770 R based on a more accurate measure of its distance combined with assumptions of its temperature.[18]
HD 90587 1,181[1] AD
RSGC1-F031,168[9]-1,326[3]L/Teff
EV Carinae1,168[6]L/TeffOlder estimates based on much larger distances have given higher luminosities, and consequently larger radii.[19][20]
LMC 1192191,150[2]L/TeffLocated in the Large Magellanic Cloud
WOH S264 1,149[5] L/Teff
V602 Carinae 1,142[1] AD
MY Cephei1,135[21]L/TeffNot to be confused with Mu Cephei (see below). Older estimates have given up to 2,440 R based on much cooler temperatures.[22]
HV 25611,133[5]L/TeffLocated in the Large Magellanic Cloud
J004035.08+404522.31,130-1,230[23]L/TeffLocated in the Andromeda Galaxy
LMC 17338 1,122[5] L/Teff
VX Sagittarii1,120-1,550[24]L/TeffVX Sgr is a pulsating variable with a large visual range and is calculated to vary in size from 1,350 R to 1,940 R.[25]
LMC 1414301,110[2]L/TeffLocated in the Large Magellanic Cloud
S Persei1,109[3]L/TeffA red supergiant located in the Perseus Double Cluster. Levsque et al. 2005 calculated radii of 780 R and 1,230 R based on K-band measurements.[26] Older estimates gave up to 2,853 R based on higher luminosities.[20]
IRAS 04516-69021,100[15]L/TeffLocated in the Large Magellanic Cloud
LMC 1757461,100[2]L/TeffLocated in the Large Magellanic Cloud
ST Cephei 1,100[1] AD
RSGC1-F081,088[3]-1,146[9]L/Teff
HV 114231,086[5]L/TeffHV 11423 is variable in spectral type (observed from K0 to M5), thus probably also in diameter. In October 1978, it was a star of M0I type.
HV 2084 1,084[5] L/Teff
LMC 1747141,080[2]L/TeffLocated in the Large Magellanic Cloud
LMC 681251,080[2]L/TeffLocated in the Large Magellanic Cloud
SMC 494781,080[2]L/Teff
SMC 201331,080[2]L/Teff
Trumpler 27-1 1,073[27] L/Teff
SMC 89301,070[2]L/Teff
V366 Andromedae 1,067[1] AD
HR 5171 Aa 1,066[1] AD HR 5171 A is a highly distorted star in a close binary system, losing mass to the secondary. It is also variable in temperature, thus probably also in diameter. Other estimates range from 1,315 ± 260[28] solar radii to 1,490 ± 540[29] solar radii.
Orbit of Jupiter1,064-1,173Reported for reference
PZ Cassiopeiae1,062[27]L/Teff
SMC 258791,060[2]L/Teff
IM Cassiopeiae 1,059[1] AD
LMC 136042 1,051[5] L/Teff Located in the Large Magellanic Cloud
VV Cephei A1,050[30]EB VV Cep A is a highly distorted star in a close binary system, losing mass to the secondary for at least part of its orbit. Data from the most recent eclipse has cast additional doubt on the accepted model of the system. Older estimates give up to 1,900 R[26]
LMC 1422021,050[2]L/TeffLocated in the Large Magellanic Cloud
LMC 1461261,050[2]L/TeffLocated in the Large Magellanic Cloud
RSGC1-F051,047[3]-1,177[9]L/Teff
SMC 108891,046[5]L/Teff
LMC 679821,040[2]L/TeffLocated in the Large Magellanic Cloud
SU Persei 1,039[1] AD In the Perseus Double Cluster
HV 11262 1,030[5] L/Teff
SMC 83593 1,019[5] L/Teff
AS Cephei 1,018[1] AD
WOH S74 1,014[5] L/Teff
W Persei 1,011[3] L/Teff
LMC 1438771,010[2]L/TeffLocated in the Large Magellanic Cloud
HD 167861 1,007[1] AD
RSGC1-F121,005[3]L/Teff
BU Sagittarii 1,005[1] AD
RT Carinae 995[1] AD
RSGC1-F13993[3]-1098[9]L/Teff
NO Aurigae 991[1] AD
SMC 46497990[2]L/Teff
LMC 140296990[2]L/TeffLocated in the Large Magellanic Cloud
SMC 55188 988[5] L/Teff
HD 143183 (V558 Normae) 988[1] AD
RSGC1-F09986[9]-1,231[3]L/Teff
NR Vulpeculae980[26]L/Teff
SMC 12322980[2]L/Teff
LMC 177997980[2]L/TeffLocated in the Large Magellanic Cloud
Mu Cephei (Herschel's "Garnet Star") 972[31] L/Teff Prototype of the obsolete class of the Mu Cephei variables and also one of reddest stars in the night sky in terms of the B-V color index.[32] Other estimates have given only 650 R based on much closer distances.[33] Margin of possible error: ±228 R[31]
HV 2236 971[5] L/Teff
SMC 59803970[2]L/Teff
Stephenson 2-03 969[3] L/Teff
Westerlund 1-20965[3]L/TeffRed supergiant within the Westerlund 1 super star cluster.
V396 Centauri 965[1] AD
GCIRS 7960[34]-1,000[35]ADLocated at the galactic center. Margin of possible error: ±92 R[34] or ±150 R.[35]
RSGC1-F11955[3]-1,015[9]L/Teff
V341 Lacertae 953[1] AD
HD 155737 951[1] AD
SMC 50840950[2]L/Teff
HU Puppis 950[1] AD
HV 894 946[5] L/Teff
J004424.94+412322.3945-1,300[23]L/TeffLocated in the Andromeda Galaxy.
UY Scuti 941[1] AD
RM 1-361 933[5] L/Teff
HV 916932[5]L/TeffLocated in the Large Magellanic Cloud
RSGC1-F10931[9]-954[3]L/Teff
S Cassiopeiae930[36][37]DSKE
WOH S71 926[5] L/Teff
IX Carinae920[26]L/Teff
HV 2112916[38]L/TeffMost likely candidate for a Thorne-Żytkow object.
RSGC1-F04914[3]-1,082[9]L/Teff
CK Carinae 909[1] AD
IRAS 04498-6842900[39]L/TeffLocated in the Large Magellanic Cloud
LMC 54365900[2]L/TeffLocated in the Large Magellanic Cloud
HV 996894[6]L/TeffLocated in the Large Magellanic Cloud
NSV 25875891[17]L/Teff
LMC 1318 891[5] L/Teff Probably the largest AGB Star.
HV 12501890[6]L/TeffLocated in the Large Magellanic Cloud
LMC 109106890[2]L/TeffLocated in the Large Magellanic Cloud
RSGC1-F06885[9]-967[3]L/Teff
Stephenson 2-11 884[3] L/Teff
IRC -20412 882[1] AD
IRAS 05558-7000880[15]L/TeffLocated in the Large Magellanic Cloud
SMC 30616880[2]L/Teff
LMC 64048880[2]L/TeffLocated in the Large Magellanic Cloud
V437 Scuti874[17]L/Teff
IRAS 04407-7000870[15]L/TeffLocated in the Large Magellanic Cloud
IRAS 05329-6708870[15]L/TeffLocated in the Large Magellanic Cloud
SMC 46662 868[5] L/Teff
HV 986867[6]L/TeffLocated in the Large Magellanic Cloud
J004047.82+410936.4860-1,010[23]L/TeffLocated in the Andromeda Galaxy
AZ Cygni 861[1] AD
AZ Cephei 860[1] AD
V669 Cassiopeiae859[17]L/Teff
HV 2360857[6]L/TeffLocated in the Large Magellanic Cloud
HV 5870856[6]L/TeffLocated in the Large Magellanic Cloud
BI Cygni850[40]-1,240[26]L/Teff
SMC 15510850[2]L/Teff
KW Sagittarii 850[1] AD Older estimates have given larger radii and consequently cooler temperatures.[26]
V358 Cassiopeiae 848[1] AD
BD-15 4915 841[1] AD
UV Carinae 840[1] AD
WOH S60 836[5] L/Teff
V1185 Scorpii830[17]L/Teff
LMC 61753830[2]L/TeffLocated in the Large Magellanic Cloud
LMC 62090830[2]L/TeffLocated in the Large Magellanic Cloud
VX Aurigae 825[1] AD
V353 Puppis 824[1] AD
UW Aquilae 823[1] AD
Stephenson 2-14 821[3] L/Teff
BC Cygni820[27]L/Teff
V362 Aurigae 819[1] AD
LMC 116895 814[5] L/Teff Located in the Large Magellanic Cloud
LMC 142199810[2]L/TeffLocated in the Large Magellanic Cloud
IRAS 05294-7104810[15]L/TeffLocated in the Large Magellanic Cloud
PMMR 41 809[5] L/Teff
HD 268850 808[5] L/Teff
YZ Persei804[1]AD
LMC 134383 802[5] L/Teff Located in the Large Magellanic Cloud
IRAS 05402-6956800[15]L/TeffLocated in the Large Magellanic Cloud
V441 Persei799[3]L/Teff
PMMR 34 796[5] L/Teff
BU Persei795[3]L/Teff
BO Carinae790[26]L/Teff
IRAS 05298-6957790[15]L/TeffLocated in the Large Magellanic Cloud
LMC 142907790[2]L/TeffLocated in the Large Magellanic Cloud
V641 Cassiopeiae 788[1] AD
HV 963 787[5] L/Teff
6 Geminorum (BU Geminorum) 787[1] AD
U Lacertae785[27]L/Teff
SMC 11709781[5]L/Teff
RW Cephei 777[1] AD RW Cep is variable both in brightness (by at least a factor of 3) and spectral type (observed from G8 to M0), thus probably also in diameter. Because the spectral type and temperature at maximum luminosity are not known, the quoted sizes are just estimates.
RS Persei770[41]-831[21]AD & L/TeffIn the Perseus Double Cluster. Margin of possible error: ±30 R.[41]
AV Persei770[26]L/TeffIn the Perseus Double Cluster
V355 Cephei770[26]L/TeffMauron et al. 2011 derive 37,000 L, which implies a size around 300 R.[19]
V517 Monocerotis 768[1] AD
HD 303250766[1]AD
PMMR 141 762[5] L/Teff
HV 2551 762[5] L/Teff
SMC 52334 761[5] L/Teff
J004124.80+411634.7760-1,240[23]L/TeffLocated in the Andromeda Galaxy and has a possible hot companion.
V915 Scorpii760[42][43]L/Teff
S Cephei760[44]AD
HD 95687 758[1] AD
J004447.08+412801.7755-825[23]L/TeffLocated in the Andromeda Galaxy
Psi1 Aurigae 753[1] AD
GP Cassiopeiae751[3]L/Teff
Outer limits of the asteroid belt750-900Reported for reference
SMC 11939750[2]L/Teff
V838 Monocerotis750[45]L/Teff A short time after the outburst V838 Mon was measured at 1,570 ± 400 R,[46] but its distance, and hence its size, have since been reduced and it proved to be a transient object that shrunk about four-fold over a few years. Like CW Leo, it has been erroneously portrayed as "Nibiru" or "Planet X" (see below).
R Cygni745[47][48]L/Teff
RU Virginis740[49]L/Teff
LMC 137818740[2]L/TeffLocated in the Large Magellanic Cloud
SMC 48122740[2]L/Teff
V923 Centauri 736[1] AD
IRAS 04545-7000730[15]L/TeffLocated in the Large Magellanic Cloud
IRAS 05003-6712730[15]L/TeffLocated in the Large Magellanic Cloud
SMC 56732730[2]L/Teff
WOH SG374730[50]L/Teff
GU Cephei 730[1] AD
KK Persei724[3]L/Teff
AD Persei 724[21] L/Teff
RSGC1-F07718[3]-910[9]L/Teff
XX Persei710[3]L/TeffLocated in the Perseus Double Cluster and near the border with Andromeda.
V648 Cassiopeiae710[26]L/Teff
Stephenson 2-04 710[3] L/Teff
Mercer 8-06 707[3] L/Teff
Antares A (Alpha Scorpii A)707[1] (varies by 19%)[51]ADAntares was originally calculated to be over 850 R,[52][53] but those estimates are likely to have been affected by asymmetry of the atmosphere of the star.[54]
HV 1652 706[5] L/Teff
HD 179821704[55]DSKE HD 179821 may be a yellow hypergiant or a much less luminous star.
SMC 55681 704[5] L/Teff
V407 Puppis 703[1] AD
J004255.95+404857.5700-785[23]L/TeffLocated in the Andromeda Galaxy
V528 Carinae700[26]L/Teff
J003950.98+405422.5700[56]L/TeffLocated in the Andromeda Galaxy
LMC 169754700[2]L/TeffLocated in the Large Magellanic Cloud
LMC 65558700[2]L/TeffLocated in the Large Magellanic Cloud
SP77 30-6 (WOH S66)700[50]L/Teff
V770 Cassiopeiae 700[1] AD
The following stars with sizes below 700 radii are kept here for comparison
Betelgeuse (Alpha Orionis) 697[1] AD Star with the third largest apparent size after R Doradus and the Sun. Another estimate gives 955±217 R[57]
V354 Cephei685[27]-1,520[26]L/Teff
RX Telescopii 682-1,882[1] AD RX Telescopii may be as large as 1,882 R. But the lower estimate is used here.
KY Cygni 672[27]-1,420[26] L/Teff
RSGC1-F14590[3]-697[9]L/Teff
V509 Cassiopeiae (HR 8752)590[1]ADYellow hypergiant, one of the rarest types of star.
CE Tauri587-593[58] (-608[59])ADCan be occulted by the Moon, allowing accurate determination of its apparent diameter.
V382 Carinae471[1]AD Yellow hypergiant, one of the rarest types of a star.
CW Leonis390[60]-826[17]L/TeffPrototype of carbon stars. CW Leo was mistakenly identified as the claimed planet "Nibiru" or "Planet X".
Inner limits of the asteroid belt380Reported for reference
IRC +10420357[61]L/TeffA yellow hypergiant that has increased its temperature into the LBV range. De beck et al. 2010 calculates 1,342 R based on a much cooler temperature.[17]
Mira A (Omicron Ceti)332-402[62]ADPrototype Mira variable. De beck et al. 2010 calculates 541 R.[17]
The Pistol Star306[63]ADBlue hypergiant, among the most massive and luminous stars known.
R Doradus298[64]AD Star with the second largest apparent size after the Sun.
Orbit of Mars297-358Reported for reference
La Superba (Y Canum Venaticorum)289[1]ADReferred to as La Superba by Angelo Secchi. Currently one of the coolest and reddest stars.
Sun's red giant phase256[65]At this point, the Sun will engulf Mercury and Venus, and possibly the Earth although it will move away from its orbit since the Sun will lose a third of its mass. During the helium burning phase, it will shrink to 10 R but will later grow again and become an unstable AGB star, and then a white dwarf after making a planetary nebula.[66][67] Reported for reference
Rho Cassiopeiae242[1]ADYellow hypergiant, one of the rarest types of a star.
Eta Carinae A~240[68]Previously thought to be the most massive single star, but in 2005 it was realized to be a binary system. During the Great Eruption, the size was much larger at around 1,400 R.[69] η Car is calculated to be between 60 R and 881 R.[70]
Orbit of Earth215 (211-219)Reported for reference
Solar System Habitable Zone200-520[71] (uncertain)Reported for reference
Orbit of Venus154-157Reported for reference
Epsilon Aurigae A (Almaaz)143-358[72]ADε Aur was incorrectly claimed in 1970 as the largest star with a size between 2,000 R and 3,000 R,[73] even though it later turned out not to be an infrared light star but rather a dusk torus surrounding the system.
Deneb (Alpha Cygni)99.84[1]ADPrototype Alpha Cygni variable.
Peony Star92[74]ADCandidate for most luminous star in the Milky Way.
Canopus (Alpha Carinae)71[75]ADSecond brightest star in the night sky.
Orbit of Mercury66-100Reported for reference
LBV 1806-2046-145[76]L/TeffFormerly a candidate for the most luminous star in the Milky Way with 40 million L,[77] but the luminosity has been revised later only 2 million L.[78][79]
Aldebaran (Alpha Tauri)43.06[1]AD
Polaris (Alpha Ursae Minoris)37.5[80]ADThe current northern pole star.
R136a128.8[81]-35.4[82]ADAlso on record as the most massive and luminous star known (315 M and 8.71 million L).
Arcturus (Alpha Boötis)24.25[1]ADBrightest star in the northern hemisphere.
HDE 22686820-22[83]The supergiant companion of black hole Cygnus X-1. The black hole is around 500,000 times smaller than the star.
Sun1The largest object in the Solar System.
Reported for reference
  1. Methods for calculating the radius:
    • AD: radius determined from angular diameter and distance
    • L/Teff: radius calculated from bolometric luminosity and effective temperature
    • DSKE: radius calculated using the disk emission
    • EB: radius determined from observations of the eclipsing binary

See also

References

  1. Cruzalèbes, P.; Petrov, R. G.; Robbe-Dubois, S.; Varga, J.; Burtscher, L.; Allouche, F.; Berio, P.; Hofmann, K. H.; Hron, J.; Jaffe, W.; Lagarde, S.; Lopez, B.; Matter, A.; Meilland, A.; Meisenheimer, K.; Millour, F.; Schertl, D. (2019). "A catalogue of stellar diameters and fluxes for mid-infrared interferometry". Monthly Notices of the Royal Astronomical Society. 490 (3): 3158–3176. arXiv:1910.00542. Bibcode:2019MNRAS.490.3158C. doi:10.1093/mnras/stz2803.
  2. Levesque, Emily M.; Massey, Philip; Olsen, K.A.G.; Plez, Bertrand; Meynet, Georges; Maeder, Andre (2006). "The Effective Temperatures and Physical Properties of Magellanic Cloud Red Supergiants: The Effects of Metallicity". The Astrophysical Journal. 645 (2): 1102–1117. arXiv:astro-ph/0603596. Bibcode:2006ApJ...645.1102L. doi:10.1086/504417.
  3. Fok, Thomas K. T; Nakashima, Jun-ichi; Yung, Bosco H. K; Hsia, Chih-Hao; Deguchi, Shuji (2012). "Maser Observations of Westerlund 1 and Comprehensive Considerations on Maser Properties of Red Supergiants Associated with Massive Clusters". The Astrophysical Journal. 760 (1): 65. arXiv:1209.6427. Bibcode:2012ApJ...760...65F. doi:10.1088/0004-637X/760/1/65.
  4. Davies, B.; Figer, D. F.; Kudritzki, R. P.; MacKenty, J.; Najarro, F.; Herrero, A. (2007). "A Massive Cluster of Red Supergiants at the Base of the Scutum‐Crux Arm". The Astrophysical Journal. 671 (1): 781–801. arXiv:0708.0821. Bibcode:2007ApJ...671..781D. doi:10.1086/522224.
  5. Groenewegen, M. A. T.; Sloan, G. C. (2018). "Luminosities and mass-loss rates of Local Group AGB stars and red supergiants". Astronomy & Astrophysics. 609. arXiv:1711.07803. Bibcode:2018A&A...609A.114G. doi:10.1051/0004-6361/201731089.
  6. Van Loon, J. Th.; Cioni, M.-R. L.; Zijlstra, A. A.; Loup, C. (2005). "An empirical formula for the mass-loss rates of dust-enshrouded red supergiants and oxygen-rich Asymptotic Giant Branch stars". Astronomy and Astrophysics. 438 (1): 273–289. arXiv:astro-ph/0504379. Bibcode:2005A&A...438..273V. doi:10.1051/0004-6361:20042555.
  7. Matsuura, Mikako; Sargent, B.; Swinyard, Bruce; Yates, Jeremy; Royer, P.; Barlow, M. J.; Boyer, Martha; Decin, L.; Khouri, Theo; Meixner, Margaret; Van Loon, Jacco Th.; Woods, Paul M. (2016). "The mass-loss rates of red supergiants at low metallicity: Detection of rotational CO emission from two red supergiants in the Large Magellanic Cloud". Monthly Notices of the Royal Astronomical Society. 462 (3): 2995. arXiv:1608.01729. Bibcode:2016MNRAS.462.2995M. doi:10.1093/mnras/stw1853.
  8. Wright, Nicholas J; Wesson, Roger; Drew, Janet E; Barentsen, Geert; Barlow, Michael J; Walsh, Jeremy R; Zijlstra, Albert; Drake, Jeremy J; Eislöffel, Jochen; Farnhill, Hywel J (2014). "The ionized nebula surrounding the red supergiant W26 in Westerlund 1". Monthly Notices of the Royal Astronomical Society: Letters. 437 (1): L1. arXiv:1309.4086. Bibcode:2014MNRAS.437L...1W. doi:10.1093/mnrasl/slt127.
  9. Davies, Ben; Figer, Don F.; Law, Casey J.; Kudritzki, Rolf-Peter; Najarro, Francisco; Herrero, Artemio; MacKenty, John W. (2008). "The cool supergiant population of the massive young star cluster RSGC1". The Astrophysical Journal. 676 (2): 1016–1028. doi:10.1086/527350. ISSN 0004-637X.
  10. Wittkowski, M.; Hauschildt, P. H.; Arroyo-Torres, B.; Marcaide, J. M. (2012). "Fundamental properties and atmospheric structure of the red supergiant VY Canis Majoris based on VLTI/AMBER spectro-interferometry". Astronomy & Astrophysics. 540: L12. arXiv:1203.5194. Bibcode:2012A&A...540L..12W. doi:10.1051/0004-6361/201219126.
  11. Alcolea, J; Bujarrabal, V; Planesas, P; Teyssier, D; Cernicharo, J; De Beck, E; Decin, L; Dominik, C; Justtanont, K; De Koter, A; Marston, A. P; Melnick, G; Menten, K. M; Neufeld, D. A; Olofsson, H; Schmidt, M; Schöier, F. L; Szczerba, R; Waters, L. B. F. M (2013). "HIFISTARSHerschel/HIFI observations of VY Canis Majoris. Molecular-line inventory of the envelope around the largest known star". Astronomy & Astrophysics. 559: A93. arXiv:1310.2400. Bibcode:2013A&A...559A..93A. doi:10.1051/0004-6361/201321683.
  12. Monnier, J. D; Millan-Gabet, R; Tuthill, P. G; Traub, W. A; Carleton, N. P; Coudé Du Foresto, V; Danchi, W. C; Lacasse, M. G; Morel, S; Perrin, G; Porro, I. L; Schloerb, F. P; Townes, C. H (2004). "High-Resolution Imaging of Dust Shells by Using Keck Aperture Masking and the IOTA Interferometer". The Astrophysical Journal. 605 (1): 436–461. arXiv:astro-ph/0401363. Bibcode:2004ApJ...605..436M. doi:10.1086/382218.
  13. Massey, Philip; Levesque, Emily M.; Plez, Bertrand (August 2006). "Bringing VY Canis Majoris Down to Size: An Improved Determination of Its Effective Temperature". The Astrophysical Journal. 646 (2): 1203–1208. doi:10.1086/505025.
  14. Arroyo-Torres, B; Wittkowski, M; Marcaide, J. M; Hauschildt, P. H (June 2013). "The atmospheric structure and fundamental parameters of the red supergiants AH Scorpii, UY Scuti, and KW Sagittarii". Astronomy & Astrophysics. 554 (A76): A76. arXiv:1305.6179. Bibcode:2013A&A...554A..76A. doi:10.1051/0004-6361/201220920.
  15. Marshall, Jonathan R; van Loon, Jacco Th; Matsuura, Mikako; Wood, Peter R; Zijlstra, Albert A; Whitelock, Patricia A (2004). "The AGB superwind speed at low metallicity". Monthly Notices of the Royal Astronomical Society. 355 (4): 1348. arXiv:astro-ph/0410120. Bibcode:2004MNRAS.355.1348M. doi:10.1111/j.1365-2966.2004.08417.x.
  16. Gvaramadze, V. V.; Menten, K. M.; Kniazev, A. Y.; Langer, N.; MacKey, J.; Kraus, A.; Meyer, D. M.-A.; Kamiński, T. (2014). "IRC -10414: A bow-shock-producing red supergiant star". Monthly Notices of the Royal Astronomical Society. 437 (1): 843. arXiv:1310.2245. Bibcode:2014MNRAS.437..843G. doi:10.1093/mnras/stt1943.
  17. De Beck, E.; Decin, L.; De Koter, A.; Justtanont, K.; Verhoelst, T.; Kemper, F.; Menten, K. M. (2010). "Probing the mass-loss history of AGB and red supergiant stars from CO rotational line profiles. II. CO line survey of evolved stars: Derivation of mass-loss rate formulae". Astronomy and Astrophysics. 523: A18. arXiv:1008.1083. Bibcode:2010A&A...523A..18D. doi:10.1051/0004-6361/200913771.
  18. Zhang, B.; Reid, M. J.; Menten, K. M.; Zheng, X. W.; Brunthaler, A. (2012). "The distance and size of the red hypergiant NML Cygni from VLBA and VLA astrometry". Astronomy & Astrophysics. 544: A42. arXiv:1207.1850. Bibcode:2012A&A...544A..42Z. doi:10.1051/0004-6361/201219587.
  19. Mauron, N.; Josselin, E. (2011). "The mass-loss rates of red supergiants and the de Jager prescription". Astronomy and Astrophysics. 526: A156. arXiv:1010.5369. Bibcode:2011A&A...526A.156M. doi:10.1051/0004-6361/201013993.
  20. De Jager, C; Nieuwenhuijzen, H; Van Der Hucht, K. A (1988). "Mass loss rates in the Hertzsprung-Russell diagram". Astronomy and Astrophysics Supplement Series. 72: 259. Bibcode:1988A&AS...72..259D. ISSN 0365-0138.
  21. Beasor, Emma R; Davies, Ben; Arroyo-Torres, B; Chiavassa, A; Guirado, J. C; Marcaide, J. M; Alberdi, A; De Wit, W. J; Hofmann, K. -H; Meilland, A; Millour, F; Mohamed, S; Sanchez-Bermudez, J (2018). "The evolution of red supergiant mass-loss rates" (PDF). Monthly Notices of the Royal Astronomical Society. 475 (1): 55. Bibcode:2018MNRAS.475...55B. doi:10.1093/mnras/stx3174.
  22. Fawley, W. M; Cohen, M (1974). "The open cluster NGC 7419 and its M7 supergiant IRC +60 375". Astrophysical Journal. 193: 367. Bibcode:1974ApJ...193..367F. doi:10.1086/153171.
  23. Massey, Philip; Silva, David R; Levesque, Emily M; Plez, Bertrand; Olsen, Knut A. G; Clayton, Geoffrey C; Meynet, Georges; Maeder, Andre (2009). "Red Supergiants in the Andromeda Galaxy (M31)". The Astrophysical Journal. 703: 420–440. arXiv:0907.3767. Bibcode:2009ApJ...703..420M. doi:10.1088/0004-637X/703/1/420.
  24. Xu, Shuangjing; Zhang, Bo; Reid, Mark J; Menten, Karl M; Zheng, Xingwu; Wang, Guangli (2018). "The Parallax of the Red Hypergiant VX Sgr with Accurate Tropospheric Delay Calibration". The Astrophysical Journal. 859 (1): 14. arXiv:1804.00894. Bibcode:2018ApJ...859...14X. doi:10.3847/1538-4357/aabba6.
  25. Lockwood, G.W.; Wing, R. F. (1982). "The light and spectrum variations of VX Sagittarii, an extremely cool supergiant". Monthly Notices of the Royal Astronomical Society. 198 (2): 385–404. Bibcode:1982MNRAS.198..385L. doi:10.1093/mnras/198.2.385.
  26. Table 4 in Levesque, Emily M.; Massey, Philip; Olsen, K. A. G.; Plez, Bertrand; Josselin, Eric; Maeder, Andre; Meynet, Georges (2005). "The Effective Temperature Scale of Galactic Red Supergiants: Cool, but Not as Cool as We Thought". The Astrophysical Journal. 628 (2): 973–985. arXiv:astro-ph/0504337. Bibcode:2005ApJ...628..973L. doi:10.1086/430901.
  27. Messineo, M.; Brown, A. G. A. (2019). "A Catalog of Known Galactic K-M Stars of Class I Candidate Red Supergiants in Gaia DR2". The Astronomical Journal. 158 (1): 20. arXiv:1905.03744. Bibcode:2019AJ....158...20M. doi:10.3847/1538-3881/ab1cbd.
  28. Chesneau, O.; Meilland, A.; Chapellier, E.; Millour, F.; Van Genderen, A. M.; Nazé, Y.; Smith, N.; Spang, A.; Smoker, J. V.; Dessart, L.; Kanaan, S.; Bendjoya, Ph.; Feast, M. W.; Groh, J. H.; Lobel, A.; Nardetto, N.; Otero, S.; Oudmaijer, R. D.; Tekola, A. G.; Whitelock, P. A.; Arcos, C.; Curé, M.; Vanzi, L. (2014). "The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in the common envelope phase". Astronomy & Astrophysics. 563: A71. arXiv:1401.2628. Bibcode:2014A&A...563A..71C. doi:10.1051/0004-6361/201322421.
  29. Wittkowski, M.; Arroyo-Torres, B.; Marcaide, J. M.; Abellan, F. J.; Chiavassa, A.; Guirado, J. C. (2017). "VLTI/AMBER spectro-interferometry of the late-type supergiants V766 Cen (=HR 5171 A), σ Oph, BM Sco, and HD 206859". Astronomy & Astrophysics. 597 (9): A9. arXiv:1610.01927. Bibcode:2017A&A...597A...9W. doi:10.1051/0004-6361/201629349.
  30. Bauer, W. H.; Gull, T. R.; Bennett, P. D. (2008). "Spatial Extension in the Ultraviolet Spectrum of Vv Cephei". The Astronomical Journal. 136 (3): 1312. Bibcode:2008AJ....136.1312H. doi:10.1088/0004-6256/136/3/1312.
  31. Montargès, M.; Homan, W.; Keller, D.; Clementel, N.; Shetye, S.; Decin, L.; Harper, G. M.; Royer, P.; Winters, J. M.; Le Bertre, T.; Richards, A. M. S. (2019). "NOEMA maps the CO J = 2 − 1 environment of the red supergiant μ Cep". Monthly Notices of the Royal Astronomical Society. 485 (2): 2417–2430. arXiv:1903.07129. Bibcode:2019MNRAS.485.2417M. doi:10.1093/mnras/stz397.
  32. Ahad, Abdul (May 1, 2004). "The second 'Garnet Star' after Mu Cephei must be 119 Tauri!". Google Groups. Archived from the original on January 30, 2018. Retrieved January 30, 2018.
  33. Tsuji, Takashi (2000). "Water in Emission in the Infrared Space Observatory Spectrum of the Early M Supergiant Star μ Cephei". The Astrophysical Journal Letters. 540 (2): 99–102. arXiv:astro-ph/0008058. Bibcode:2000ApJ...540L..99T. doi:10.1086/312879.
  34. Paumard, T; Pfuhl, O; Martins, F; Kervella, P; Ott, T; Pott, J-U; Le Bouquin, JB; Breitfelder, J; Gillessen, S; Perrin, G; Burtscher, L; Haubois, X; Brandner, W (2014). "GCIRS 7, a pulsating M1 supergiant at the Galactic centre . Physical properties and age". Astronomy & Astrophysics. 568 (85): A85. arXiv:1406.5320. Bibcode:2014A&A...568A..85P. doi:10.1051/0004-6361/201423991.
  35. Pott, J.-U.; Eckart, A.; Glindemann, A.; Kraus, S.; Schöde, R.; Ghez, A. M.; Woillez, J.; Weigelt, G. (2014). "First VLTI infrared spectro-interferometry on GCIRS 7". Astronomy & Astrophysics. 487: 413–418. arXiv:0805.4408. Bibcode:2008A&A...487..413P. doi:10.1051/0004-6361:200809829.
  36. Ramstedt, S.; Schöier, F. L.; Olofsson, H. (2009). "Circumstellar molecular line emission from S-type AGB stars: mass-loss rates and SiO abundances". Astronomy and Astrophysics. 499 (2): 515–527. arXiv:0903.1672. Bibcode:2009A&A...499..515R. doi:10.1051/0004-6361/200911730.
  37. Ramstedt, S.; Schöier, F. L.; Olofsson, H.; Lundgren, A. A. (2006). "Mass-loss properties of S-stars on the AGB". Astronomy and Astrophysics. 454 (2): L103. arXiv:astro-ph/0605664. Bibcode:2006A&A...454L.103R. doi:10.1051/0004-6361:20065285.
  38. Levesque, Emily M.; Massey, P.; Zytkow, A. N.; Morrell, N. (1 September 2014). "Discovery of a Thorne-̇Żytkow object candidate in the Small Magellanic Cloud". Monthly Notices of the Royal Astronomical Society: Letters. 443: L94–L98. arXiv:1406.0001. Bibcode:2014MNRAS.443L..94L. doi:10.1093/mnrasl/slu080.
  39. Garcia-Hernandez, D. A; Manchado, A; Lambert, D. L; Plez, B; Garcia-Lario, P; D'Antona, F; Lugaro, M; Karakas, A. I; van Raai, M (2009). "Rb-rich Asymptotic Giant Branch stars in the Magellanic Clouds". The Astrophysical Journal. 705: L31–L35. arXiv:0909.4391. doi:10.1088/0004-637X/705/1/L31.
  40. Josselin, E.; Plez, B. (2007). "Atmospheric dynamics and the mass loss process in red supergiant stars". Astronomy and Astrophysics. 469 (2): 671–680. arXiv:0705.0266. Bibcode:2007A&A...469..671J. doi:10.1051/0004-6361:20066353.
  41. Baron, F.; Monnier, J. D.; Kiss, L. L.; Neilson, H. R.; Zhao, M.; Anderson, M.; Aarnio, A.; Pedretti, E.; Thureau, N.; Ten Brummelaar, T. A.; Ridgway, S. T.; McAlister, H. A.; Sturmann, J.; Sturmann, L.; Turner, N. (2014). "CHARA/MIRC Observations of Two M Supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging". The Astrophysical Journal. 785 (1): 46. arXiv:1405.4032. Bibcode:2014ApJ...785...46B. doi:10.1088/0004-637X/785/1/46.
  42. Stickland, D. J. (1985). "IRAS observations of the cool galactic hypergiants". The Observatory. 105: 229. Bibcode:1985Obs...105..229S.
  43. Odenwald, S. F. (1986). "An IRAS survey of IR excesses in G-type stars". Astrophysical Journal. 307: 711. Bibcode:1986ApJ...307..711O. doi:10.1086/164456.
  44. Richichi, A.; Percheron, I.; Khristoforova, M. (2005). "CHARM2: An updated Catalog of High Angular Resolution Measurements". Astronomy and Astrophysics. 431 (4): 773–777. Bibcode:2005A&A...431..773R. doi:10.1051/0004-6361:20042039. Archived from the original on 2016-03-05. Retrieved 2019-07-31.
  45. Chesneau, Olivier; Millour, Florentin; De Marco, Orsola; Bright, S. N.; Spang, Alain; Banerjee, D. P. K.; Ashok, N. M.; Kaminski, T.; Wisniewski, John P.; Meilland, Anthony; Lagadec, Eric (2014). "V838 Monocerotis: the central star and its environment a decade after outburst". Astronomy. 569: L3. arXiv:1407.5966. Bibcode:2014A&A...569L...3C. doi:10.1051/0004-6361/201424458.
  46. Lane, B. F.; Retter, A.; Thompson, R. R.; Eisner, J. A. (April 2005). "Interferometric Observations of V838 Monocerotis". The Astrophysical Journal. 622 (2): L137–L140. arXiv:astro-ph/0502293. Bibcode:2005ApJ...622L.137L. doi:10.1086/429619.
  47. Guandalini, R; Francis, Charles (2010). "Infrared photometry and evolution of mass-losing AGB stars. III. Mass loss rates of MS and S stars". Astronomy and Astrophysics. 513: A4. arXiv:1002.2458. Bibcode:2010A&A...513A...4G. doi:10.1051/0004-6361/200911764.
  48. Ramstedt, S; Schöier, F. L; Olofsson, H (2009). "Circumstellar molecular line emission from S-type AGB stars: Mass-loss rates and SiO abundances". Astronomy and Astrophysics. 499 (2): 515. arXiv:0903.1672. Bibcode:2009A&A...499..515R. doi:10.1051/0004-6361/200911730.
  49. Bergeat, J.; Chevallier, L. (2005). "The mass loss of C-rich giants". Astronomy and Astrophysics. 429: 235–246. arXiv:astro-ph/0601366. Bibcode:2005A&A...429..235B. doi:10.1051/0004-6361:20041280.
  50. Van Loon, J. Th.; Groenewegen, M. A. T.; de Koter, A.; Trams, N. R.; Waters, L. B. F. M.; Zijlstra, A. A.; Whitelock, P. A.; Loup, C. (1999). "Mass-loss rates and luminosity functions of dust-enshrouded AGB stars and red supergiants in the LMC". Astronomy and Astrophysics. 351 (2): 559–572. arXiv:astro-ph/9909416v1. Bibcode:1999A&A...351..559V.
  51. Mark J. Pecaut; Eric E. Mamajek & Eric J. Bubar (February 2012). "A Revised Age for Upper Scorpius and the Star Formation History among the F-type Members of the Scorpius-Centaurus OB Association". Astrophysical Journal. 746 (2): 154. arXiv:1112.1695. Bibcode:2012ApJ...746..154P. doi:10.1088/0004-637X/746/2/154.
  52. Pugh, T.; Gray, D. F. (2013-02-01). "On the Six-year Period in the Radial Velocity of Antares A". The Astronomical Journal. 145 (2): 38. Bibcode:2013AJ....145...38P. doi:10.1088/0004-6256/145/2/38. ISSN 0004-6256.
  53. Baade, R.; Reimers, D. (2007-10-01). "Multi-component absorption lines in the HST spectra of alpha Scorpii B". Astronomy and Astrophysics. 474 (1): 229–237. Bibcode:2007A&A...474..229B. doi:10.1051/0004-6361:20077308. ISSN 0004-6361.
  54. Ohnaka, K.; Hofmann, K.-H.; Schertl, D.; Weigelt, G.; Baffa, C.; Chelli, A.; Petrov, R.; Robbe-Dubois, S. (2013). "High spectral resolution imaging of the dynamical atmosphere of the red supergiant Antares in the CO first overtone lines with VLTI/AMBER". Astronomy & Astrophysics. 555: A24. arXiv:1304.4800. Bibcode:2013A&A...555A..24O. doi:10.1051/0004-6361/201321063.
  55. Hawkins, G. W; Skinner, C. J; Meixner, M. M; Jernigan, J. G; Arens, J. F; Keto, E; Graham, J. R (1995). "Discovery of an Extended Nebula around AFGL 2343 (HD 179821) at 10 Microns". Astrophysical Journal. 452: 314. Bibcode:1995ApJ...452..314H. doi:10.1086/176303.
  56. Massey, Philip; Evans, Kate Anne (2016). "The Red Supergiant Content of M31". The Astrophysical Journal. 826 (2): 224. arXiv:1605.07900. Bibcode:2016ApJ...826..224M. doi:10.3847/0004-637X/826/2/224.
  57. Neilson, H. R.; Lester, J. B.; Haubois, X. (December 2011). "Weighing Betelgeuse: Measuring the Mass of α Orionis from Stellar Limb-darkening". Astronomical Society of the Pacific. 9th Pacific Rim Conference on Stellar Astrophysics. Proceedings of a conference held at Lijiang, China in 14–20 April 2011. ASP Conference Series, Vol. 451: 117. arXiv:1109.4562. Bibcode:2010ASPC..425..103L.
  58. Montargès, M.; Norris, R.; Chiavassa, A.; Tessore, B.; Lèbre, A.; Baron, F. (June 2018). "The convective photosphere of the red supergiant CE Tau. I. VLTI/PIONIER H-band interferometric imaging". Astronomy & Astrophysics. 614 (12): A12. arXiv:1802.06086. Bibcode:2018A&A...614A..12M. doi:10.1051/0004-6361/201731471.
  59. Parker, Greg (July 2, 2012). "The second reddest star in the sky – 119 Tauri, CE Tauri". New Forest Observatory. Archived from the original on August 25, 2018. Retrieved January 4, 2019.
  60. Men'shchikov1, A. B.; Balega, Y.; Blöcker, T.; Osterbart, R.; Weigelt, G. (2001). "Structure and physical properties of the rapidly evolving dusty envelope of IRC +10216 reconstructed by detailed two-dimensional radiative transfer modeling". Astronomy and Astrophysics. 392 (3): 921–929. arXiv:astro-ph/0206410. Bibcode:2002A&A...392..921M. doi:10.1051/0004-6361:20020954.
  61. Dinh-V.-Trung; Muller, Sébastien; Lim, Jeremy; Kwok, Sun; Muthu, C. (2009). "Probing the Mass-Loss History of the Yellow Hypergiant IRC+10420". The Astrophysical Journal. 697 (1): 409–419. arXiv:0903.3714. Bibcode:2009ApJ...697..409D. doi:10.1088/0004-637X/697/1/409.
  62. Woodruff, H. C.; Eberhardt, M.; Driebe, T.; Hofmann, K.-H.; et al. (2004). "Interferometric observations of the Mira star o Ceti with the VLTI/VINCI instrument in the near-infrared". Astronomy & Astrophysics. 421 (2): 703–714. arXiv:astro-ph/0404248. Bibcode:2004A&A...421..703W. doi:10.1051/0004-6361:20035826.
  63. Najarro, F.; Figer, D. F.; Hillier, D. J.; Geballe, T. R.; Kudritzki, R. P. (2009). "Metallicity in the Galactic Center: The Quintuplet Cluster". The Astrophysical Journal. 691 (2): 1816–1827. arXiv:0809.3185. Bibcode:2009ApJ...691.1816N. doi:10.1088/0004-637X/691/2/1816.
  64. Ohnaka, Keiichi; Weigelt, Gerd; Hofmann, Karl-Heinz (2019). "Infrared Interferometric Three-dimensional Diagnosis of the Atmospheric Dynamics of the AGB Star R Dor with VLTI/AMBER". The Astrophysical Journal. 883 (1): 89. arXiv:1908.06997. Bibcode:2019ApJ...883...89O. doi:10.3847/1538-4357/ab3d2a.
  65. Rybicki, K. R.; Denis, C. (2001). "On the Final Destiny of the Earth and the Solar System". Icarus. 151 (1): 130–137. Bibcode:2001Icar..151..130R. doi:10.1006/icar.2001.6591.
  66. Schröder, K.-P.; Connon Smith, R. (2008). "Distant future of the Sun and Earth revisited". Monthly Notices of the Royal Astronomical Society. 386 (1): 155–163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.
  67. Vassiliadis, E.; Wood, P.R. (1993). "Evolution of low- and intermediate-mass stars to the end of the asymptotic giant branch with mass loss". The Astrophysical Journal. 413: 641. Bibcode:1993ApJ...413..641V. doi:10.1086/173033.
  68. Gull, T. R.; Damineli, A. (2010). "JD13 – Eta Carinae in the Context of the Most Massive Stars". Proceedings of the International Astronomical Union. 5: 373–398. arXiv:0910.3158. Bibcode:2010HiA....15..373G. doi:10.1017/S1743921310009890.
  69. Smith, Nathan (2011). "Explosions triggered by violent binary-star collisions: Application to Eta Carinae and other eruptive transients". Monthly Notices of the Royal Astronomical Society. 415 (3): 2020–2024. arXiv:1010.3770. Bibcode:2011MNRAS.415.2020S. doi:10.1111/j.1365-2966.2011.18607.x.
  70. D. John Hillier; K. Davidson; K. Ishibashi; T. Gull (June 2001). "On the Nature of the Central Source in η Carinae". Astrophysical Journal. 553 (837): 837. Bibcode:2001ApJ...553..837H. doi:10.1086/320948.
  71. Ramirez, Ramses; Kaltenegger, Lisa (2017). "A Volcanic Hydrogen Habitable Zone". The Astrophysical Journal Letters. 837 (1): L4. arXiv:1702.08618. Bibcode:2017ApJ...837L...4R. doi:10.3847/2041-8213/aa60c8.
  72. Kloppenborg, B.K.; Stencel, R.E.; Monnier, J.D.; Schaefer, G.H.; Baron, F.; Tycner, C.; Zavala, R.T.; Hutter, D.; Zhao, M.; Che, X.; Ten Brummelaar, T.A.; Farrington, C.D.; Parks, R.; McAlister, H. A.; Sturmann, J.; Sturmann, L.; Sallave-Goldfinger, P.J.; Turner, N.; Pedretti, E.; Thureau, N. (2015). "Interferometry of ɛ Aurigae: Characterization of the Asymmetric Eclipsing Disk". The Astrophysical Journal Supplement Series. 220 (1): 14. arXiv:1508.01909. Bibcode:2015ApJS..220...14K. doi:10.1088/0067-0049/220/1/14.
  73. "Ask Andy: The Biggest Star". Ottawa Citizen. Nov 27, 1970. p. 23.
  74. Barniske, A.; Oskinova, L. M.; Hamann, W. -R. (2008). "Two extremely luminous WN stars in the Galactic center with circumstellar emission from dust and gas". Astronomy and Astrophysics. 486 (3): 971. arXiv:0807.2476. Bibcode:2008A&A...486..971B. doi:10.1051/0004-6361:200809568.
  75. Cruzalebes, P.; Jorissen, A.; Rabbia, Y.; Sacuto, S.; Chiavassa, A.; Pasquato, E.; Plez, B.; Eriksson, K.; Spang, A.; Chesneau, O. (2013). "Fundamental parameters of 16 late-type stars derived from their angular diameter measured with VLTI/AMBER". Monthly Notices of the Royal Astronomical Society. 434 (1): 437–450. arXiv:1306.3288. Bibcode:2013MNRAS.434..437C. doi:10.1093/mnras/stt1037.
  76. Eikenberry, S. S.; Matthews, K.; Lavine, J. L.; Garske, M. A.; Hu, D.; Jackson, M. A.; Patel, S. G.; Barry, D. J.; Colonno, M. R.; Houck, J. R.; Wilson, J. C.; Corbel, S.; Smith, J. D. (2004). "Infrared Observations of the Candidate LBV 1806‐20 and Nearby Cluster Stars". The Astrophysical Journal. 616 (1): 506–518. arXiv:astro-ph/0404435. Bibcode:2004ApJ...616..506E. doi:10.1086/422180.
  77. Kennedy, Meghan. "LBV 1806-20 AB?". SolStation.com. Archived from the original on 2017-11-13. Retrieved 2017-10-28.
  78. Figer, D. F.; Najarro, F.; Kudritzki, R. P. (2004). "The Double-lined Spectrum of LBV 1806-20". The Astrophysical Journal. 610 (2): L109–L112. arXiv:astro-ph/0406316. Bibcode:2004ApJ...610L.109F. doi:10.1086/423306.
  79. Nazé, Y.; Rauw, G.; Hutsemékers, D. (2012). "The first X-ray survey of Galactic luminous blue variables". Astronomy & Astrophysics. 538 (47): A47. arXiv:1111.6375. Bibcode:2012A&A...538A..47N. doi:10.1051/0004-6361/201118040.
  80. Fadeyev, Y. A. (2015). "Evolutionary status of Polaris". Monthly Notices of the Royal Astronomical Society. 449 (1): 1011–1017. arXiv:1502.06463. Bibcode:2015MNRAS.449.1011F. doi:10.1093/mnras/stv412.
  81. Hainich, R.; Rühling, U.; Todt, H.; Oskinova, L. M.; Liermann, A.; Gräfener, G.; Foellmi, C.; Schnurr, O.; Hamann, W. -R. (2014). "The Wolf–Rayet stars in the Large Magellanic Cloud". Astronomy & Astrophysics. 565 (27): A27. arXiv:1401.5474. Bibcode:2014A&A...565A..27H. doi:10.1051/0004-6361/201322696.
  82. Crowther, P. A.; Schnurr, O.; Hirschi, R.; Yusof, N.; Parker, R. J.; Goodwin, S. P.; Kassim, H. A. (2010). "The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M stellar mass limit". Monthly Notices of the Royal Astronomical Society. 408 (2): 731–751. arXiv:1007.3284. Bibcode:2010MNRAS.408..731C. doi:10.1111/j.1365-2966.2010.17167.x.
  83. Ziółkowski, J. (2005), "Evolutionary constraints on the masses of the components of HDE 226868/Cyg X-1 binary system", Monthly Notices of the Royal Astronomical Society, 358 (3): 851–859, arXiv:astro-ph/0501102, Bibcode:2005MNRAS.358..851Z, doi:10.1111/j.1365-2966.2005.08796.x Note: For radius, see Table 1 with d=2 kpc.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.