List of gravitational wave observations

This is a list of observed/candidate gravitational wave events. Direct observation of gravitational waves,[n 1] which commenced with the detection of an event by LIGO in 2015, constitutes part of gravitational wave astronomy. LIGO has played a role in all subsequent detections to date, with Virgo joining in August 2017.

The first measurement of a gravitational wave event

Nomenclature

Gravitational wave events are named starting with the prefix GW, while observations that trigger a event alert but have not (yet) been confirmed are named starting with the prefix S.[2] The next two numbers indicate the year the event was observed, the middle two numbers are the month of observation and the final two numbers are the day of the month on which the event was observed. This is similar to the systematic naming for other kinds of astronomical event observations, such as those of gamma-ray bursts. Probable detections that are not confidently identified as gravitational wave events are designated LVT ("LIGO-Virgo trigger"). Known gravitational wave events come from the merger of two black holes (BH), two neutron stars (NS), or a black hole and a neutron star.[3][4]

Observations are made in "runs", three of them so far, with maintenance and upgrades of the detectors made between runs. The first run, O1, ran from 12 September 2015 to 19 January 2016, with O2 from 30 November 2016 to 25 August 2017.[5] O3 began on 1 April 2019; it is divided (so far) into O3a, from 1 April to 30 September 2019, and O3b, from 1 November 2019 to the present.[6]

List of gravitational wave events

Events from LIGO & Virgo
O1 & O2/2015-2017 events
O3/2019 Alerts

Observations from O1 and O2/2015-2017

List of binary merger events[7][8]
GW event
and time (UTC)[n 2]
Date
published
Location
area[n 3]
(deg2)
Luminosity
distance

(Mpc)[n 4]
Energy
radiated
(c2M)
[n 5]
Chirp mass (M)
[n 6]
Effective spin[n 7] Primary Secondary Remnant Notes Ref.
Type Mass (M) Type Mass (M) Type Mass (M) Spin[n 8]
GW150914
09:50:45
2016-02-11
179; mostly to the south
430+150
−170
3.1+0.4
−0.4
28.6+1.6
−1.5
−0.01+0.12
−0.13
BH
[n 9]
35.6+4.8
−3.0
BH
[n 10]
30.6+3.0
−4.4
BH
63.1+3.3
−3.0
0.69+0.05
−0.04
First GW detection;
first BH merger observed
[14][15][13]
GW151012
09∶54:43
2016-06-15
1555
1060+540
−480
1.5+0.5
−0.5
15.2+2.0
−1.1
0.04+0.28
−0.19
BH
23.3+14.0
−5.5
BH
13.6+4.1
−4.8
BH
35.7+9.9
−3.8
0.67+0.13
−0.11
Formerly candidate LVT151012;
accepted as astrophysical since February 2019
[16][8][7]
GW151226
03:38:53
2016-06-15
1033
440+180
−190
1.0+0.1
−0.2
8.9+0.3
−0.3
0.18+0.20
−0.12
BH
13.7+8.8
−3.2
BH
7.7+2.2
−2.6
BH
20.5+6.4
−1.5
0.74+0.07
−0.05
[17][18]
GW170104
10∶11:58
2017-06-01
924
960+430
−410
2.2+0.5
−0.5
21.5+2.1
−1.7
−0.04+0.17
−0.20
BH
31.0+7.2
−5.6
BH
20.1+4.9
−4.5
BH
49.1+5.2
−3.5
0.66+0.08
−0.10
[9][19]
GW170608
02:01:16
2017-11-16
396; to the north
320+120
−110
0.9+0.0
−0.1
7.9+0.2
−0.2
0.03+0.19
−0.07
BH
10.9+5.3
−1.7
BH
7.6+1.3
−2.1
BH
17.8+3.2
−0.7
0.69+0.04
−0.04
Smallest BH progenitor
masses to date
[20]
GW170729
18:56:29
2018-11-30
1033
2750+1350
−1320
4.8+1.7
−1.7
35.7+6.5
−4.7
0.36+0.21
−0.25
BH
50.6+16.6
−10.2
BH
34.3+9.1
−10.1
BH
80.3+14.6
−10.2
0.81+0.07
−0.13
Largest progenitor masses to date [8]
GW170809
08:28:21
2018-11-30
340; towards Cetus
990+320
−380
2.7+0.6
−0.6
25.0+2.1
−1.6
0.07+0.16
−0.16
BH
35.2+8.3
−6.0
BH
23.8+5.2
−5.1
BH
56.4+5.2
−3.7
0.70+0.08
−0.09
[8]
GW170814
10∶30:43
2017-09-27
87; towards Eridanus
580+160
−210
2.7+0.4
−0.3
24.2+1.4
−1.1
0.07+0.12
−0.11
BH
30.7+5.7
−3.0
BH
25.3+2.9
−4.1
BH
53.4+3.2
−2.4
0.72+0.07
−0.05
First announced detection by
three observatories; first polarization measurement
[21][22]
GW170817
12∶41:04
2017-10-16
16; NGC 4993
40±10
 0.04
1.186+0.001
−0.001
0.00+0.02
−0.01
NS
1.46+0.12
−0.10
NS
1.27+0.09
−0.09
NS
[n 11]
 2.8[n 12]
 0.89
First NS merger observed in
GW; first detection of EM counterpart (GRB 170817A; AT 2017gfo); nearest event to date
[12][25][26]
GW170818
02:25:09
2018-11-30
39; towards Pegasus
1020+430
−360
2.7+0.5
−0.5
26.7+2.1
−1.7
−0.09+0.18
−0.21
BH
35.5+7.5
−4.7
BH
26.8+4.3
−5.2
BH
59.8+4.8
−3.8
0.67+0.07
−0.08
[8]
GW170823
13:13:58
2018-11-30
1651
1850±840
3.3+0.9
−0.8
29.3+4.2
−3.2
0.08+0.20
−0.22
BH
39.6+10.0
−6.6
BH
29.4+6.3
−7.1
BH
65.6+9.4
−6.6
0.71+0.08
−0.10
[8]
Gravitational Wave Transient Catalog 1. Credit:LIGO Scientific Collaboration and Virgo Collaboration/Georgia Tech/S. Ghonge & K. Jani

Marginal detections from O1 and O2

In addition to well-constrained detections listed above, a number of low-significance detections of possible signals were made by LIGO and Virgo. Their characteristics are listed below:

Marginal event detections
candidate event  Detection
time (UTC)
date published Luminosity
distance

(Mpc)
[n 13]
Detector
[n 14]
False Alarm
Rate (Yr)
Effective spin Primary Secondary probability
of
terrestrial
noise
Notes Ref
Type Mass (M) Type Mass (M)
1509282015-09-28 10:49:002018-11-05H,L0.042-0.70
NS
2.53
NS
1.02~0.9[27]
1510112015-10-11 19:27:492019-10-111560+1090
−740
H,L0.120.09+0.29
−0.27
BH
51+18
−12
BH
31±120.92[28]
1510192015-10-19 00:23:162018-11-05H,L0.0600.11
BH
14.93
NS
1.27~0.9[27]
1512052015-12-05 19:55:252019-10-113000+2400
−1600
H,L0.610.14+0.40
−0.38
BH
67+28
−17
BH
42+16
−19
0.47[28]
1512132015-12-13 00:12:202018-11-05H,L0.309-0.79
BH
11.12
Mass gap
3.300.953[27]
151216A2015-12-16 09:24:162019-10-111620+1140
−910
H,L0.100.51+0.21
−0.57
BH
41+15
−17
BH
14.4+7.0
−6.3
0.82[28]
151216B2015-12-16 18:49:302019-10-11500+280
−250
H,L0.03−0.03+0.24
−0.49
BH
19.7+6.4
−7.4
Mass gap
3.25+1.32
−0.58
0.93Smaller mass could be a neutron star[28]
1512172015-12-17 03:47:492019-10-111000+660
−440
H,L0.150.70+0.15
−0.50
BH
46+13
−26
BH
8.2+5.1
−1.7
0.74[28]
1512222015-12-22 05:28:262018-11-05H,L0.075-0.74
BH
6.86
Mass gap
3.260.988[27]
1512312015-12-31 00:40:302019-02-27H,L0.85[29]
1601032016-01-03 05:48:362018-11-05H,L0.3960.49
BH
9.75
BH
7.290.939[27]
1701042017-01-04 21:58:402019-10-114600+4300
−3100
H,L0.030.25+0.50
−0.49
BH
98+49
−40
BH
44+30
−33
0.88[28]
1701212017-01-21 21:25:362019-04-15H,L−0.3±0.3
BH
29+4
−3
BH
<0.01[30]
1701232017-01-23 20:16:422019-10-112800+2800
−1600
H,L0.04−0.12+0.31
−0.35
BH
44+23
−12
BH
28±130.92[28]
1702012017-02-01 11:03:122019-10-111530+1360
−770
H,L0.160.44+0.28
−0.54
BH
48+13
−23
BH
13.1+8.6
−3.7
0.76[28]
1702022017-02-02 13:56:572019-10-111220+980
−640
H,L0.06−0.06+0.27
−0.32
BH
33+17
−11
BH
13.8+7.0
−4.8
0.87[28]
1702202017-02-20 11:36:242019-10-113600+3700
−2100
H,L0.050.28+0.33
−0.37
BH
69+37
−25
BH
31+22
−14
0.90[28]
1703042017-03-04 16:37:532019-10-112300+1600
−1200
H,L2.50.11+0.29
−0.27
BH
44.9+17.6
−9.4
BH
31.8+9.5
−11.6
0.30[28]
1704022017-04-02 21:51:502019-10-21H,L0.32[31]
1704032017-04-03 23:06:112019-10-112500+2100
−1300
H,L0.07−0.20+0.35
−0.37
BH
53+23
−13
BH
35+13
−15
0.97[28]
1704252017-04-25 05:53:342019-10-112600+2000
−1300
H,L0.20−0.06+0.28
−0.32
BH
45+21
−11
BH
30±110.79[28]
1706202017-06-20 01:14:022019-10-111710+1300
−850
H,L0.040.05±0.25
BH
29.4+13.2
−6.8
BH
17.9+5.4
−5.5
0.98[28]
1706292017-06-29 04:13:552019-10-111880+1450
−940
H,L0.060.73+0.15
−0.98
BH
49+20
−30
BH
7.3+4.6
−2.6
0.98[28]
1707212017-07-21 05:55:132019-10-111160+750
−520
H,L0.04−0.06+0.25
−0.29
BH
31.7+9.3
−6.1
BH
21.4+5.3
−5.6
0.94[28]
1707272017-07-27 01:04:302019-10-112200+1500
−1100
H,L180−0.05+0.25
−0.30
BH
41.6+12.8
−7.9
BH
30.4+7.9
−8.2
0.006[28]
1708012017-08-01 23:28:192019-10-111070+920
−580
L,V0.04−0.09+0.25
−0.24
BH
23.9+12.6
−6.6
BH
12.4+4.7
−4.0
0.99[28]
170817A2017-08-17 03:02:462019-10-21H,L,V11.50.5±0.2
BH
56+16
−10
BH
40+10
−11
0.14[31]
1708182017-08-18 09:34:452019-10-113100+1700
−1900
H,V0.040.06+0.48
−0.45
BH
55+59
−28
BH
23+43
−15
0.99[28]

Observation candidates from O3/2019

From observation run O3/2019 on, observations are published as Open Public Alerts to facilitate multi-messenger observations of events.[32][33][34] Candidate event records can be directly accessed at the Gravitational Wave Candidate Event Database.[35] On 1 April 2019, the start of the third observation run was announced with a circular published in the public alerts tracker.[36] The first O3/2019 binary black hole detection alert was broadcast on 8 April 2019. A significant percentage of O3 candidate events detected by LIGO are accompanied by corresponding triggers at Virgo. False alarm rates are mixed, with more than half of events assigned false alarm rates greater than 1 per 20 years, contingent on presence of glitches around signal, foreground electromagnetic instability, seismic activity, and operational status of any one of the three LIGO-Virgo instruments. For instance, events S190421ar and S190425z weren’t detected by Virgo and LIGO’s Hanford site, respectively.

The LIGO/Virgo collaboration took a short break from observing during the month of October 2019 to improve performance and prepare for future plans, with no signals detected in that month as a result.[37]

The Kamioka Gravitational Wave Detector (KAGRA) in Japan became operational on 25 February 2020,[38] likely improving the detection and localization of future gravitational wave signals.[39] However, KAGRA does not report their signals in real-time on GraceDB as LIGO and Virgo do, so the results of their observation run will likely not be published until the end of O3.

The LIGO-Virgo collaboration ended the O3 run early on March 27, 2020 due to health concerns from the COVID-19 pandemic.[40][41]

Candidate detections from O3
1
2
3
4
5
6
7
8
9
10
19/04
19/05
19/06
19/07
19/08
19/09
19/10
19/11
19/12
20/01
20/02
20/03
  •   BNS mergers
  •   NS-BH mergers
  •   BBH mergers
  •   mass gap
  •   terrestrial noise
  •   false positives
  •   unidentified
O3 detections by distance
2
4
6
8
10
12
14
16
18
20
<100 Mpc
100-200 Mpc
200-500 Mpc
500-1000 Mpc
1000-2000 Mpc
2000-5000 Mpc
5000+ Mpc
  •   BNS mergers
  •   NS-BH mergers
  •   BBH mergers
  •   mass gap
List of O3 event alerts[7][8]
GW event  Detection
time (UTC)
Location
area
[n 15]
(deg2)
Luminosity
distance

(Mpc)
[n 16]
Detector
[n 17]
False Alarm
Rate (Hz)
Classification Notes Ref
NS / NS
[n 18]
NS / BH
[n 19]
BH / BH
[n 20]
Mass gap
[n 21]
Terrestrial
[n 22]
S190408an 2019-04-08
18:18:02
387; towards Pegasus or Lacerta
1473±358
H,L,V 2.8 10−18 0.0 0.0 ~1.0 0.0 9.8e−12 [42][43]
GW190412 2019-04-12
05:30:44
156; towards Virgo or Boötes
812±194
H,L,V 1.7 10−27 0.0 0.0 ~1.0 0.0 1.7e−20 First possible observation of a merger of two black holes of very different masses [44]
S190421ar 2019-04-21
21:38:56
1444
1628±535
H,L 1.5 10−8 0.0 0.0 0.967 0.0 0.033 Initially marked with 96% chance of having a terrestrial origin ["noise"], but later upgraded to 97% chance of being a binary black hole merger. [45]
GW190425 2019-04-25
08:18:05
370; towards Hercules[46]
156±41
L,V 4.5 10−13 0.9994 0.0 0.0 0.0 0.00060 Originally designated S190425z (z:26th trigger|UTC day), this trigger was detected by a single LIGO instrument (of three LVC stations), and is considered by some scientists to have been confirmed as a binary neutron star merger.[47]

It was published in 2020 that a Gamma-ray burst was detected (GRB 190425) ~0.5 seconds after the LIGO trigger, lasting 6 seconds and bearing similarities to GRB170817 (such as weakness [most power in sub-100 keV, or soft X-rays) bands], elevated energetic photon background levels [signal exceeding background by less than a factor of 2], and similar differences from other transients classified as short GRBs). Confidence was established for interpretation of a set of peaks through a control interval of only 2 days prior to the LIGO-Livingston trigger in INTEGRAL Electronic anticoincidence, could not be corroborated by other instruments and wasn't initially noted as a significant event. Non-detection in other instruments may be a consequence of an Earth-occulted source as the Fermi telescope attempted follow-up.[46]

[48]
S190426c 2019-04-26
15:21:55
1131
377±100
H,L,V 1.9 10−8 0.244 0.064 0.0 0.117 0.575 Initially marked with 49% chance of being binary neutron star merger, 13% neutron star-black hole merger, 24% mass gap merger.
Later marked with a 52% chance of NS-BH, 22% mass gap, 13% BNS, and 14% terrestrial, before being revised to the current solution
[49][50]

[51]

S190503bf 2019-05-03
18:54:04
448; towards Columba, Pictor, or Puppis
421±105
H,L,V 1.6 10−9 0.0 0.0047 0.963 0.032 0.00012 [52]
S190510g 2019-05-10
02:59:39
1166; towards Columba or Canis Major
227±92
H,L,V 8.8 10−9 0.42 0.0 0.0 0.0 0.58 Initially reported with a 2% chance of terrestrial origin ["noise"], later downgraded to ~58% terrestrial foreground probability ["noise"]. [53]
S190512at 2019-05-12
18:07:14
252; towards Scorpius or Ophiuchus
1388±322
H,L,V 1.9 10−9 0.0 0.0 0.990 0.0 0.010 [54]
S190513bm 2019-05-13
20:54:28
691; towards Sagittarius, Capricornus, Perseus, or Camelopardalis
1987±501
H,L,V 3.7 10−13 0.0 0.0052 0.943 0.052 6.0e−8 [55]
S190517h 2019-05-17
05:51:01
939
2950±1038
H,L,V 1.8 10−12 0.0 0.00077 0.983 0.017 0.000043 [56]
S190519bj 2019-05-19
15:35:44
967
3154±791
H,L,V 5.7 10−9 0.0 0.0 0.956 0.0 0.044 [57]
GW190521g (S190521g) 2019-05-21
03:02:29
765;[58] towards Coma Berenices, Canes Venatici, or Phoenix
3931±953
H,L,V 3.8 10−9 0.0 0.0 0.966 0.0 0.034 [58][59]
S190521r 2019-05-21
07:43:59
488; towards Pegasus, Cygnus, Vulpecula, Sagitta, Hercules, Ophiuchus, or Scorpius
1136±279
H,L 3.2 10−10 0.0 0.0 0.9993 0.0 0.00067 [60]
S190602aq 2019-06-02
17:59:27
1172
797±238
H,L,V 1.9 10−9 0.0 0.0 0.990 0.0 0.0097 [61]
S190630ag 2019-06-30
18:52:05
1483
926±259
L,V 1.4 10−13 0.0 0.0052 0.943 0.052 1.8e−7 [62]
S190701ah 2019-07-01 20:33:45
49; towards Eridanus or Cetus
1849±446
H,L,V 1.9 10−8 0.0 0.0 0.934 0.0 0.066 [63]
S190706ai 2019-07-06 22:26:57
826
5263±1402
H,L,V 1.9 10−9 0.0 0.0 0.990 0.0 0.010 [64]
S190707q 2019-07-07 09:33:44
921
781±211
H,L 5.3 10−12 0.0 0.0 0.999989 0.0 0.000011 [65]
S190718y 2019-07-18 14:35:12
7246
227±165
H,L,V 3.6 10−8 0.022 0.0 0.0 0.0 0.979 Estimated to have a 98% chance to be terrestrial noise, despite passing data quality checks. [66]
S190720a 2019-07-20 00:08:53
443; mostly towards Cygnus
869±283
H,L 3.8 10−9 0.0 0.0 0.989 0.0 0.011 Initially reported with a 71% chance of being terrestrial "noise" [non-cosmological in origin], upgraded to 1% after preliminary Virgo detector signal path inconsistency found to be insignificant. [67]
S190727h 2019-07-27 06:03:51
151; towards Cassiopeia,Andromeda or Carina
2839±655
H,L,V 1.4 10−10 0.0 0.0018 0.922 0.028 0.048 [68]
S190728q 2019-07-28 06:45:27
104; towards Delphinus, Pegasus, or Equuleus
874±171
H,L,V 2.5 10−23 0.0 0.144 0.340 0.516 3.6e-13 Updated from an initial estimate which gave 14.4% NS/BH, 34.0% BH/BH, 51.6% mass gap, and a later estimate which gave a virtually certain BH/BH merger. [69]
GW190814 (S190814bv) 2019-08-14 21:11:18
23; towards Cetus or Sculptor
267±52
H,L,V 2.0 10−33 0.0 0 0 ~1 0 No optical counterpart was discovered despite an extensive search of the probability region. The mass of the lighter component is estimated to be 2.6 times the mass of the Sun, placing it in the mass gap between neutron stars and black holes.[70] [71][72][73][74][75]
[76][77][78][79]
S190828j 2019-08-28 06:34:05
228; towards Hydra, Pyxis, Antlia, Vela, Lacerta, or Cygnus
1946±388
H,L,V 8.5 10−22 0.0 0.0 ~1.0 0.0 3.8e-14 [80]
S190828l 2019-08-28 06:55:09
359; towards Pyxis, Vela, Carina, or Musca
1528±387
H,L,V 4.6 10−11 0.0 0.0 0.9996 0.0 0.00041 [81]
S190901ap 2019-09-01
23:31:01
14753
241±79
L,V 7.0 10−9 0.861 0.0 0.0 0.0 0.139 [82]
S190910d 2019-09-10
01:26:19
2482
632±186
H,L 3.7 10−9 0.0 0.976 0.0 0.0 0.024 [83]
S190910h 2019-09-10
08:29:58
24264
230±88
L 3.6 10−8 0.612 0.0 0.0 0.0 0.388 Detected by only the Livingston detector, resulting in a bad sky localization. [84]
S190915ak 2019-09-15 23:57:25
318; towards Coma Berenices, Canes Venatici, or Ursa Major
1584±381
H,L,V 9.7 10−10 0.0 0.0 0.995 0.0 0.0053 [85]
S190923y 2019-09-23 12:55:59
2107
438±133
H,L 4.8 10−8 0.0 0.677 0.0 0.0 0.322 [86]
S190924h 2019-09-24 02:18:46
303; towards Hydra or Cancer
548±112
H,L,V 8.9 10−19 0.0 0.0 0.0 ~1.0 4.7e-11 The other component of the merger has a 29.7% chance of being a neutron star, and a 70.3% chance of being either a black hole, or another object in the mass gap. [87]
S190930s 2019-09-30 13:35:41
1748
709±191
H,L 3.0 10−9 0.0 0.0 0.0 0.951 0.049 The other component is either a black hole or another object in the mass gap. [88]
S190930t 2019-09-30 14:34:07
24220
108±38
L 1.5 10−8 0.0 0.743 0.0 0.0 0.257 Detected by only the Livingston detector, resulting in a bad sky localization; last detection of the O3a run. [89]
S191105e 2019-11-05 14:35:21
643
1183±281
H,L,V 2.3 10−8 0.0 0.0 0.953 0.0 0.047 First detection of the O3b run. [90]
S191109d 2019-11-09 01:07:17
1487
1810±604
H,L 1.5 10−13 0.0 0.0 0.9999978 0.0 0.0000022 [91]
S191129u 2019-11-29 13:40:29
852
742±180
H,L 2.7 10−35 0.0 0.0 ~1.0 0.0 1.2e-27 [92]
S191204r 2019-12-04 17:15:25
103; towards Pictor, Caelum, or Eridanus
678±149
H,L,V 3.1 10−25 0.0 0.0 ~1.0 0.0 8.7e-18 [93]
S191205ah 2019-12-05 21:52:08
6378
385±164
H,L,V 1.2 10−8 0.0 0.932 0.0 0.0 0.068 [94]
S191213g 2019-12-13 04:34:08
4480
201±81
H,L,V 3.5 10−8 0.768 0.0 0.0 0.0 0.232 [95]
S191215w 2019-12-15 22:30:52
361; towards Canis Major, Puppis, Vela, Carina, Equuleus, Pegasus, or Lacerta
1770±455
H,L,V 1.0 10−9 0.0 0.0 0.997 0.0 0.0028 [96]
S191216ap 2019-12-16 21:33:38
253; towards Capricornus, Aquarius, Pegasus, Vulpecula, or Cygnus
376±70
H,V 1.1 10−23 0.0 0.0 0.9907 0.0093 8.4e-16 Initially reported to have a ~100% chance of having a component in the mass gap. [97]
S191222n 2019-12-22 03:35:37
2324
868±265
H,L 6.5 10−12 0.0 0.0 0.999962 0.0 0.000038 [98]
S200105ae 2020-01-05 16:24:26
7373
283±74
L,V 7.7 10−7 0.0 0.027 0.0 0.0 0.973 Estimated to have a 97% chance to be terrestrial noise, despite passing data quality checks. [99]
S200112r 2020-01-12 15:58:38
4004
1125±289
L,V 1.3 10−11 0.0 0.0 0.99966 0.0 0.00034 [100]
S200114f 2020-01-14 02:08:18
403; towards Gemini, Orion, or Eridanus
?
H,L,V 1.2 10−9 0.0 0.0 0.0 0.0 ? Unidentified gravitational wave "burst" lasting 0.014 seconds at a frequency of tens of Hertz. [101]
S200115j 2020-01-15 04:23:09
908
331±97
H,L,V 2.1 10−11 0.0 0.0 0.0 0.99971 0.00029 The other component is a neutron star. [102]
S200128d 2020-01-28 02:20:36
2293
3702±1265
H,L 1.6 10−8 0.0 0.0 0.969 0.0 0.031 [103]
S200129m 2020-01-29 06:54:58
41; towards Equuleus, Delphinus, or Vulpecula
755±194
H,L,V 6.7 10−32 0.0 0.0 ~1.0 0.0 2.0e-24 [104]
S200208q 2020-02-08 13:01:17
26; towards Pyxis or Antlia
2142±459
H,L,V 2.5 10−9 0.0 0.0 0.9936 0.0 0.0066 [105]
S200213t 2020-02-13 04:10:40
2326
201±80
H,L,V 1.8 10−8 0.629 0.0 0.0 0.0 0.371 [106]
S200219ac 2020-02-19 09:44:15
1251
1510±405
H,L,V 1.3 10−8 0.0 0.0 0.964 0.0 0.036 [107]
S200224ca 2020-02-24 22:22:34
71; towards Virgo or Crater
1585±331
H,L,V 1.6 10−11 0.0 0.0 0.999966 0.0 0.000034 [108]
S200225q 2020-02-25 06:04:21
22; towards Ursa Minor or Cepheus
995±188
H,L 9.2 10−9 0.0 0.0 0.957 0.0 0.043 [109]
S200302c 2020-03-02 01:58:11
6704
1737±500
H,V 9.3 10−9 0.0 0.0 0.890 0.0 0.110 [110]
S200311bg 2020-03-11 11:58:53
34; towards Cetus
1115±175
H,L,V 8.9 10−26 0.0 0.0 ~1.0 0.0 4.0e-17 [111]
S200316bj 2020-03-16 21:57:56
1117
1222±340
H,L,V 7.1 10−11 0.0 0.0 0.0 0.9957 0.0043 The other component is a black hole. [112]

See also

  • GRB 150101B, a weak gamma ray burst trigger observed prior to aLIGO O1 (beginning September 12, 2015), with claimed similarities to model-supported possible neutron star merger GW170817/GRB 170817A/AT2017gfo.

Notes

  1. Indirect evidence for gravitational waves was obtained by 1978 from observations of orbital decay in the neutron star binary PSR B1913+16.[1]
  2. The detection date of a GW event is indicated by its designation; i.e., event GW150914 was detected on 2015-09-14.
  3. The relatively large and distant area of the sky within which it is claimed to be possible to localize the source.
  4. 1 Mpc is approximately 3.26 Mly.
  5. c2M is about 1.8×103 foe; 1.8×1047 J; 1.8×1054 erg; 4.3×1046 cal; 1.7×1044 BTU; 5.0×1040 kWh, or 4.3×1037 tonnes of TNT.
  6. The chirp mass is the binary parameter most relevant to the evolution of the inspiral gravitational waveform, and thus is the mass that can be measured most accurately. It is related to, but less than, the geometric mean of the binary masses, according to , thus ranging from ~87% of when the masses are the same to ~78% when they differ by an order of magnitude.
  7. The dimensionless effective inspiral spin parameter is: [9] where is the mass of a black hole, is its spin, and is the angle between the orbital angular momentum and a merging black hole's spin (ranging from when aligned to when antialigned). It is the mass-weighted linear combination of the components of the black holes' spins aligned with the orbital axis[9][8] and has values ranging from −1 to 1 (the extremes correspond to situations with both black hole spins exactly antialigned and aligned, respectively, with orbital angular momentum).[10] This is the spin parameter most relevant to the evolution of the inspiral gravitational waveform, and it can be measured more accurately than those of the premerger BHs.[11]
  8. Values of the dimensionless spin parameter cJ/GM2 for a black hole range from zero to a maximum of one. The macroscopic properties of an isolated astrophysical (uncharged) black hole are fully determined by its mass and spin. Values for other objects can potentially exceed one. The largest value known for a neutron star is ≤ 0.4, and commonly used equations of state would limit that value to < 0.7.[12]
  9. Spin estimate is 0.26+0.52
    −0.24
    .[13]
  10. Spin estimate is 0.32+0.54
    −0.29
    .[13]
  11. Based on a descending spin-down chirp observed in GW post-merger, a magnetar was produced that survived at least 5 seconds.[23]
  12. Besides the loss of mass due to GW emission that occurred during the merger, the event is thought to have ejected 0.05±0.02 M of material.[24]
  13. 1 Mpc is approximately 3.26 Mly.
  14. Which instruments observed the event. (H = LIGO Hanford, L=LIGO Livingston, V=Virgo)
  15. The area of the sky within which it was possible to localize the source.
  16. 1 Mpc is approximately 3.26 Mly.
  17. Which instruments observed the event. (H = LIGO Hanford, L=LIGO Livingston, V=Virgo)
  18. Probability that both components have mass < 3 M
  19. Probability that one component has mass < 3 M and the other has mass > 5 M
  20. Probability that both components have mass > 5 M
  21. Probability that at least one component has a mass in the range 3-5 M, between those of known neutron stars and black holes, a range sometimes identified as the "lower" mass gap
  22. Probability that the source is terrestrial or non-cosmological (e.g. foreground noises and signals [e.g. "noise"] or a technical/systematic error ["glitch"])

References

  1. "The Nobel Prize in Physics 1993". Nobel Foundation. Retrieved 2018-10-27. for the discovery of a new type of pulsar, a discovery that has opened up new possibilities for the study of gravitation
  2. "GCN/LVC Notices". Goddard Space Flight Center. Retrieved 2019-11-11.
  3. Fragione, Giacomo; et al. (2019). "Black Hole and Neutron Star Mergers in Galactic Nuclei". Monthly Notices of the Royal Astronomical Society. 488 (1): 47–63. arXiv:1811.10627. Bibcode:2019MNRAS.488...47F. doi:10.1093/mnras/stz1651.
  4. Strickland, Ashley (3 May 2019). "Scientists may have detected violent collision between neutron star, black hole". CNN. Retrieved 3 May 2019.
  5. The LIGO Scientific Collaboration; the Virgo Collaboration; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R. X.; Adya, V. B. (2019-09-04). "GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs". Physical Review X. 9 (3): 031040. arXiv:1811.12907. Bibcode:2019PhRvX...9c1040A. doi:10.1103/PhysRevX.9.031040. ISSN 2160-3308.
  6. LIGO (2019-11-01). "Welcome to O3b!". @ligo. Retrieved 2019-11-11.
  7. Nitz, Alexander H. (25 February 2019). "1-OGC: The first open gravitational-wave catalog of binary mergers from analysis of public Advanced LIGO data". Astrophysical Journal. 872 (2): 195. arXiv:1811.01921. Bibcode:2019ApJ...872..195N. doi:10.3847/1538-4357/ab0108.
  8. Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2019). "GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs". Physical Review X. 9 (3): 031040. arXiv:1811.12907. Bibcode:2019PhRvX...9c1040A. doi:10.1103/PhysRevX.9.031040.
  9. Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (1 June 2017). "GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2". Physical Review Letters. 118 (22): 221101. arXiv:1706.01812. Bibcode:2017PhRvL.118v1101A. doi:10.1103/PhysRevLett.118.221101. PMID 28621973.
  10. Farr, W. M.; Stevenson, S.; Miller, M. C.; Mandel, I.; F arr, B.; Vecchio, A. (2017). "Distinguishing spin-aligned and isotropic black hole populations with gravitational waves". Nature. 548 (7667): 426–429. arXiv:1706.01385. Bibcode:2017Natur.548..426F. doi:10.1038/nature23453. PMID 28836595.
  11. Vitale, S.; Lynch, R.; Raymond, V.; Sturani, R.; Veitch, J.; Graff, P. (2017). "Parameter estimation for heavy binary-black holes with networks of second-generation gravitational-wave detectors". Physical Review D. 95 (6): 064053. arXiv:1611.01122. Bibcode:2017PhRvD..95f4053V. doi:10.1103/PhysRevD.95.064053. hdl:1721.1/109575.
  12. Abbott, B.P.; et al. (LIGO Scientific Collaboration & Virgo Collaboration) (16 October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters. 119 (16): 161101. arXiv:1710.05832. Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. PMID 29099225.
  13. The LIGO Scientific Collaboration and The Virgo Collaboration (3 June 2016). "An improved analysis of GW150914 using a fully spin-precessing waveform model". Physical Review X. 6 (4): 041014. arXiv:1606.01210. Bibcode:2016PhRvX...6d1014A. doi:10.1103/PhysRevX.6.041014.
  14. Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (11 February 2016). "Observation of Gravitational Waves from a Binary Black Hole Merger". Physical Review Letters. 116 (6): 061102. arXiv:1602.03837. Bibcode:2016PhRvL.116f1102A. doi:10.1103/PhysRevLett.116.061102. PMID 26918975.
  15. Tushna Commissariat (11 February 2016). "LIGO detects first ever gravitational waves – from two merging black holes". Physics World.
  16. Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (21 October 2016). "Binary Black Hole Mergers in the first Advanced LIGO Observing Run". Physical Review X. 6 (4): 041015. arXiv:1606.04856. Bibcode:2016PhRvX...6d1015A. doi:10.1103/PhysRevX.6.041015.
  17. Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (15 June 2016). "GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence". Physical Review Letters. 116 (24): 241103. arXiv:1606.04855. Bibcode:2016PhRvL.116x1103A. doi:10.1103/PhysRevLett.116.241103. PMID 27367379.
  18. Nemiroff, R.; Bonnell, J., eds. (15 June 2016). "GW151226: A Second Confirmed Source of Gravitational Radiation". Astronomy Picture of the Day. NASA.
  19. Overbye, Dennis (1 June 2017). "Gravitational Waves Felt From Black-Hole Merger 3 Billion Light-Years Away". New York Times. Retrieved 1 June 2017.
  20. Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (18 December 2017). "GW170608: Observation of a 19-solar-mass Binary Black Hole Coalescence". The Astrophysical Journal Letters. 851 (2): L35. arXiv:1711.05578. Bibcode:2017ApJ...851L..35A. doi:10.3847/2041-8213/aa9f0c.
  21. Abbott, B.P.; et al. (LIGO Scientific Collaboration and Virgo Collaboration) (2017-10-06). "GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence". Phys. Rev. Lett. 119 (14): 141101. arXiv:1709.09660. Bibcode:2017PhRvL.119n1101A. doi:10.1103/PhysRevLett.119.141101. PMID 29053306. Lay summary (PDF).
  22. Overbye, Dennis (27 September 2017). "New Gravitational Wave Detection From Colliding Black Holes". The New York Times. Retrieved 28 September 2017.
  23. van Putten, Maurice H.P.M.; Della Valle, Massimo (January 2019). "Observational evidence for extended emission to GW170817". Monthly Notices of the Royal Astronomical Society: Letters. 482 (1): L46–L49. arXiv:1806.02165. Bibcode:2019MNRAS.482L..46V. doi:10.1093/mnrasl/sly166.
  24. Drout, M. R.; Piro, A. L.; Shappee, B. J.; et al. (2017-10-16). "Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis". Science. 358 (6370): 1570–1574. arXiv:1710.05443. Bibcode:2017Sci...358.1570D. doi:10.1126/science.aaq0049. PMID 29038375.
  25. Abbott, B.P.; et al. (LIGO, Virgo and other collaborations) (October 2017). "Multi-messenger Observations of a Binary Neutron Star Merger" (PDF). The Astrophysical Journal. 848 (2): L12. arXiv:1710.05833. Bibcode:2017ApJ...848L..12A. doi:10.3847/2041-8213/aa91c9.
  26. Cho, Adrian (16 October 2017). "Merging neutron stars generate gravitational waves and a celestial light show". Science. Retrieved 16 October 2017.
  27. Nitz, Alexander H.; Capano, Collin; Nielsen, Alex B.; Reyes, Steven; White, Rebecca; Brown, Duncan A.; Krishnan, Badri (25 February 2019). "1-OGC: The First Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO Data". The Astrophysical Journal. 872 (2): 195. arXiv:1811.01921. Bibcode:2019ApJ...872..195N. doi:10.3847/1538-4357/ab0108.
  28. Nitz, Alexander H.; Dent, Thomas; Davies, Gareth S.; Kumar, Sumit; Capano, Collin D.; Harry, Ian; Mozzon, Simone; Nuttall, Laura; Lundgren, Andrew; Tápai, Márton (12 March 2020). "2-OGC: Open Gravitational-wave Catalog of Binary Mergers from Analysis of Public Advanced LIGO and Virgo Data". The Astrophysical Journal. 891 (2): 123. arXiv:1910.05331. Bibcode:2020ApJ...891..123N. doi:10.3847/1538-4357/ab733f.
  29. Venumadhav, Tejaswi; Zackay, Barak; Roulet, Javier; Dai, Liang; Zaldarriaga, Matias (24 July 2019). "New search pipeline for compact binary mergers: Results for binary black holes in the first observing run of Advanced LIGO". Physical Review D. 100 (2): 023011. arXiv:1902.10341. Bibcode:2019PhRvD.100b3011V. doi:10.1103/PhysRevD.100.023011.
  30. Venumadhav, Tejaswi; Zackay, Barak; Roulet, Javier; Dai, Liang; Zaldarriaga, Matias (2020). "New Binary Black Hole Mergers in the Second Observing Run of Advanced LIGO and Advanced Virgo". Physical Review D. 101 (8): 083030. arXiv:1904.07214. Bibcode:2020PhRvD.101h3030V. doi:10.1103/PhysRevD.101.083030.
  31. Zackay, Barak; Dai, Liang; Venumadhav, Tejaswi; Roulet, Javier; Zaldarriaga, Matias (21 October 2019). "Detecting Gravitational Waves With Disparate Detector Responses: Two New Binary Black Hole Mergers". arXiv:1910.09528. doi:10.1103/PhysRevD.101.083030. Cite journal requires |journal= (help)
  32. "Real-time alerts and circulars tracker" via nasa.gov.
  33. "Observing Plans and Public Alerts". www.ligo.org. LIGO Scientific Collaboration. October 2018. Retrieved 2018-10-28.
  34. Singer, Leo P. (16 March 2017). "What constitutes an open, public alert?" (PDF). LSC (LIGO Scientific Collaboration). Retrieved 30 October 2018 via gw-astronomy.org.
  35. "GraceDB — Gravitational Wave Candidate Event Database" via ligo.org.
  36. "Real-time alerts and circulars tracker" via nasa.gov.
  37. "LIGO Announces Commissioning Break". LIGO Lab | Caltech. Retrieved 7 November 2019.
  38. "KAGRA Gravitational-wave Telescope Starts Observation « KAGRA Large-scale Cryogenic Graviationai wave Telescope Project" (in Japanese). Retrieved 2020-02-27.
  39. "KAGRA to Join LIGO and Virgo in Hunt for Gravitational Waves". LIGO Lab | Caltech. Retrieved 2019-10-06.
  40. "LIGO Laboratory's Response to COVID-19". LIGO Lab. Caltech. Retrieved 24 March 2020.
  41. "LIGO Suspends Third Observing Run (O3)". LIGO Lab. Caltech. Retrieved 20 April 2020.
  42. "Superevent info - S190408an". LIGO. Retrieved 9 April 2019.
  43. XML file with preliminary information
  44. "Superevent info - S190412m". LIGO. Retrieved 12 April 2019.
  45. "Superevent info - S190421ar". LIGO. Retrieved 8 July 2019.
  46. Позаненко, А. С.; Минаев, П. Ю.; Гребенев, С. А.; Человеков, И. В. (2019). "Наблюдение в гамма-диапазоне второго связанного со слиянием нейтронных звезд события LIGO/Virgo S190425z". Письма В Астрономический Журнал: Астрономия И Космическая Астрофизика (in Russian). 45 (11): 768–786. arXiv:1912.13112. doi:10.1134/S032001081911007X.
  47. "Gravitational waves reveal a second neutron star collision". 8 January 2020.
  48. "Superevent info - S190425z". LIGO. Retrieved 25 April 2019.
  49. "Superevent info - S190426c". LIGO. Retrieved 26 April 2019.
  50. Castelvecchi, Davide (26 April 2019). "Gravitational waves hint at detection of black hole eating star". Nature. 569 (7754): 15–16. Bibcode:2019Natur.569...15C. doi:10.1038/d41586-019-01377-2. PMID 31040413.
  51. Lundquist, M.J.; et al. (June 2019). "Searches After Gravitational-waves Using ARizona Observatories (SAGUARO): System Overview and First Resultsfrom Advanced LIGO/Virgo's Third Observing Run". The Astrophysical Journal. 881 (2): L26. arXiv:1906.06345. Bibcode:2019ApJ...881L..26L. doi:10.3847/2041-8213/ab32f2.
  52. "Superevent info - S190503bf". LIGO. Retrieved 3 May 2019.
  53. "Superevent info - S190510g". LIGO. Retrieved 10 May 2019.
  54. "Superevent info - S190512at". LIGO. Retrieved 12 May 2019.
  55. "Superevent info - S190513bm". LIGO. Retrieved 13 May 2019.
  56. "Superevent info - S190517h". LIGO. Retrieved 17 May 2019.
  57. "Superevent info - S190519bj". LIGO. Retrieved 19 May 2019.
  58. Mo, Geoffrey (21 May 2020). "GCN Circular - Number: 24640 - LIGO/Virgo S190521g: Updated sky localization". NASA. Retrieved 27 June 2020.
  59. "Superevent info - S190521g". LIGO. Retrieved 21 May 2019.
  60. "Superevent info - S190521r". LIGO. Retrieved 21 May 2019.
  61. "Superevent info - S190602aq". LIGO. Retrieved 2 June 2019.
  62. "Superevent info - S190630ag". LIGO. Retrieved 30 June 2019.
  63. "Superevent info - S190701ah". LIGO. Retrieved 1 July 2019.
  64. "Superevent info - S190706ai". LIGO. Retrieved 8 July 2019.
  65. "Superevent info - S190707q". LIGO. Retrieved 8 July 2019.
  66. "Superevent info - S190718y". LIGO. Retrieved 18 July 2019.
  67. "Superevent info - S190720a". LIGO. Retrieved 20 July 2019.
  68. "Superevent info - S190727h". LIGO. Retrieved 13 August 2019.
  69. "Superevent info - S190728q". LIGO. Retrieved 13 August 2019.
  70. "Black hole or neutron star?". June 23, 2020.
  71. "Superevent info - S190814bv". LIGO. Retrieved 15 August 2019.
  72. Starr, Michelle (16 August 2019). "Early Reports Indicate We May Have Detected a Black Hole And Neutron Star Collision". ScienceAlert.com. Retrieved 16 August 2019.
  73. Mandelbum, Ryan F. (26 August 2019). "Mystery Deepens Around Newly Detected Ripples in Space-Time". Gizmodo. Retrieved 26 August 2019.
  74. Starr, Michelle (11 February 2020). "First Papers on The Black Hole-Neutron Star Merger Are In. Here's What We Didn't See". ScienceAlert.com. Retrieved 11 February 2020.
  75. Ackley, K.; et al. (5 February 2020). "Observational constraints on the optical and near-infrared emission from the neutron star-black hole binary merger S190814bv". arXiv:2002.01950v1 [astro-ph.SR].
  76. Overbye, Dennis (24 June 2020). "A Black Hole's Lunch Provides a Treat for Astronomers - Scientists have discovered the heaviest known neutron star, or maybe the lightest known black hole: "Either way it breaks a record."". The New York Times. Retrieved 24 June 2020.
  77. Starr, Michelle (24 June 2020). "Astronomers Detect First-Ever Mystery Object in The 'Mass Gap' of Cosmic Collisions". ScienceAlert.com. Retrieved 24 June 2020.
  78. University of Birmingham (23 June 2020). "Gravitational wave scientists grapple with the cosmic mystery of GW190814". EurekAlert!. Retrieved 24 June 2020.
  79. Abbott, R.; et al. (23 June 2020). "GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object". The Astrophysical Journal Letters. 896 (2). doi:10.3847/2041-8213/ab960f. Retrieved 24 June 2020.
  80. "Superevent info - S190818j". LIGO. Retrieved 28 August 2019.
  81. "Superevent info - S190818l". LIGO. Retrieved 28 August 2019.
  82. "Superevent info - S190901ap". LIGO. Retrieved 6 September 2019.
  83. "Superevent info - S190910d". LIGO. Retrieved 10 September 2019.
  84. "Superevent info - S190910h". LIGO. Retrieved 10 September 2019.
  85. "Superevent info - S190915ak". LIGO. Retrieved 19 September 2019.
  86. "Superevent info - S190923y". LIGO. Retrieved 24 September 2019.
  87. "Superevent info - S190924h". LIGO. Retrieved 24 September 2019.
  88. "Superevent info - S190930s". LIGO. Retrieved 30 September 2019.
  89. "Superevent info - S190930t". LIGO. Retrieved 30 September 2019.
  90. "Superevent info - S191105e". LIGO. Retrieved 5 November 2019.
  91. "Superevent info - S191109d". LIGO. Retrieved 9 November 2019.
  92. "Superevent info - S191129u". LIGO. Retrieved 8 December 2019.
  93. "Superevent info - S191204r". LIGO. Retrieved 4 December 2019.
  94. "Superevent info - S191205ah". LIGO. Retrieved 5 December 2019.
  95. "Superevent info - S191213g". LIGO. Retrieved 14 December 2019.
  96. "Superevent info - S191215w". LIGO. Retrieved 23 December 2019.
  97. "Superevent info - S191216ap". LIGO. Retrieved 25 December 2019.
  98. "Superevent info - S191222n". LIGO. Retrieved 22 December 2019.
  99. "Superevent info - S200105ae". LIGO. Retrieved 6 January 2020.
  100. "Superevent info - S200112r". LIGO. Retrieved 12 January 2020.
  101. "Superevent info - S200114f". LIGO. Retrieved 14 January 2020.
  102. "Superevent info - S200115j". LIGO. Retrieved 15 January 2020.
  103. "Superevent info - S200128d". LIGO. Retrieved 28 January 2020.
  104. "Superevent info - S200129m". LIGO. Retrieved 29 January 2020.
  105. "Superevent info - S200208q". LIGO. Retrieved 8 February 2020.
  106. "Superevent info - S200213t". LIGO. Retrieved 13 February 2020.
  107. "Superevent info - S200219ac". LIGO. Retrieved 19 February 2020.
  108. "Superevent info - S200224ca". LIGO. Retrieved 25 February 2020.
  109. "Superevent info - S200225q". LIGO. Retrieved 26 February 2020.
  110. "Superevent info - S200302c". LIGO. Retrieved 2 March 2020.
  111. "Superevent info - S200311bg". LIGO. Retrieved 11 March 2020.
  112. "Superevent info - S200316bj". LIGO. Retrieved 17 March 2020.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.