Timeline of glaciation

Climate history over the past 500 million years, with the last three major ice ages indicated, Andean-Saharan (450 Ma), Karoo (300 Ma) and Current. A less severe cold period or ice age is shown during the Jurassic-Cretaceous (150 Ma).

There have been five or six major ice ages in the history of Earth over the past 3 billion years. The Current Ice Age began 34 million years ago, its latest phase being the Quaternary glaciation, in progress since 2.58 million years ago.

Within ice ages, there exist periods of more severe glacial conditions and more temperate referred to as glacial periods and interglacial periods, respectively. The Earth is currently in such an interglacial period of the Quaternary glaciation, with the last glacial period of the Quaternary having ended approximately 11,700 years ago, the current interglacial being known as the Holocene epoch.[1] Based on climate proxies, paleoclimatologists study the different climate states originating from glaciation.

Known ice ages

Name Period (Ma) Period Era
Pongola 2900 – 2780[2] Mesoarchean
Huron 2400 – 2100 Siderian
Rhyacian
Paleoproterozoic
Sturt
Marino
Gaskiers
Baykonur
715 – 680
650 – 635
580
547
Cryogenian

Ediacaran
Neoproterozoic
Andean-Saharan
(incl. Hirnantian and Late Ordovician glaciation in general)
450 – 420 Late Ordovician
Silurian
Paleozoic
Karoo 360 – 260 Carboniferous
Permian
Paleozoic
Current
(incl. Quaternary gl.)
34 – present Late Paleogene (Oligocene)
Neogene
Quaternary
Cenozoic


1010

Precambrian" "
HadeanArcheanProterozoicPhane
Eo-Paleo-Meso-Neo-Paleo-Meso-Neo-PMC
987654321

109

ProterozoicPhanerozoic
NeoproterozoicPaleozoicMesozoicCenozoic
TonianCryogenianEdiacaranCambrOrdovSiDevonCarbonPermiTriasJurasCretaP-gene
987654321

108

MesozoicCenozoic
CretaceousPaleogeneNeogeneQuat
LatePaleoceneEoceneOligoceneMiocenePlio
987654321

107

NeogeneQuaternary
MiocenePliocenePleistocene
TortonianMessinianZancleanPiacenziaGelasianCalabrianIonian
987654321

106

Pleistocene
CalabrianIonianTarantian
987654321

105

PleistoceneSubatlantic
987654321

104

987654321

Descriptions

The third ice age, and possibly most severe, is estimated to have occurred from 720 to 635 Ma (million years) ago,[3] in the Neoproterozoic Era, and it has been suggested that it produced a second[4] "Snowball Earth", in which the Earth iced over completely. It has been suggested also that the end of this second cold period[4] was responsible for the subsequent Cambrian Explosion, a time of rapid diversification of multicelled life during the Cambrian Period. However, this hypothesis is still controversial,[5][6] though is growing in popularity among researchers, as evidence in its favor has mounted.

A minor series of glaciations occurred from 460 Ma to 430 Ma. There were extensive glaciations from 350 to 250 Ma.

The Current Ice Age has seen extensive ice sheets in Antarctica for the last 34 Ma. During the last 3 Ma ice sheets have also developed on the northern hemisphere. This phase is known as the Quaternary glaciation, and has seen more or less extensive glaciation on 40,000 and later, 100,000 year cycles.

Nomenclature of Quaternary glacial cycles

Whereas the first 30 million years of the Current Ice Age mostly involved Antarctica, the Quaternary has seen numerous ice sheets extending over parts of Europe and North America that are currently populated and easily accessible. Early geologists therefore named apparent sequences of glacial and interglacial periods of the Quaternary Ice Age after characteristic geological features, and these names varied from region to region. It is now more common for researchers to refer to the periods by their marine isotopic stage number.[7] The marine record preserves all the past glaciations; the land-based evidence is less complete because successive glaciations may wipe out evidence of their predecessors. Ice cores from continental ice accumulations also provide a complete record, but do not go as far back in time as marine data. Pollen data from lakes and bogs as well as loess profiles provided important land-based correlation data.[8] The names system has mostly been phased out by professionals, who instead use the marine isotopic stage indexes for all technical discussions. For example, there are five Pleistocene glacial/interglacial cycles recorded in marine sediments during the last half million years, but only three classic interglacials were originally recognized on land during that period (Mindel, Riss and Würm).[9]

Land-based evidence works acceptably well back as far as MIS 6, but it has been difficult to coordinate stages using just land-based evidence before that. Hence, the "names" system is incomplete and the land-based identifications of ice ages previous to that are somewhat conjectural. Nonetheless, land based data is essentially useful in discussing landforms, and correlating the known marine isotopic stage with them.[8]

Historical nomenclature in the Alpes

Historical nomenclature in Great Britain and Ireland

Historical nomenclature in Northern Europe

Historical nomenclature in North America

Historical nomenclature in South America

Uncertain Correlations

It has proved difficult to correlate the traditional regional names with the global marine and ice core sequences. The indexes of MIS often identify several distinct glaciations that overlap in time with a single traditional regional glaciation. Some modern authors use the traditional regional glacial names to identify such a sequence of glaciations, whereas others replace the word “glaciation” with “complex” to refer to a continuous period of time that also includes warmer stages. As shown in the table below, it is only during the last 200-300 thousand years that the time resolution of the traditional nomenclature allow for direct correspondence with MIS indexes.

Marine
isotope
stage
Period (ka)
[11]
Historical regional names
Alpine region Great Britain N. Europe N. America S. America
MIS 19 790-761 AC AC AC Pre-illinois
MIS 18 761-712 AC AC AC Pre-illinois
MIS 17 712-676 AC AC AC Pre-illinois
MIS 16 676-621 AC AC AC Pre-illinois
MIS 15 621-563 AC Cromer? Cromer? Pre-illinois
MIS 14 563-533 AC Cromer? Cromer? Pre-illinois
MIS 13 533-478 AC Cromer? Cromer? Pre-illinois
MIS 12 478-424 Mindel? Anglia? Elster? Pre-illinois
MIS 11 424-374 AC Hoxne? AC Pre-illinois
MIS 10 374-337 Mindel? Anglia? Elster? Pre-illinois
MIS 9 337-300 Mindel-Riss? Hoxne? Holstein? Pre-illinois
MIS 8 300-243 Riss? Wolston Saale? Illinois?
MIS 7 243-191 AC Wolston AC AC
MIS 6 191-130 Riss Wolston Saale Illinois
MIS 5e 123 (peak) Riss-Würm Ipswich Eem Sangamon Valdivia
MIS 5d 109 (peak) AC Devens/Early D.[12] Weichsel/Herning[13] AC AC
MIS 5c 96 (peak) AC Devens/Early D.[12] Weichsel/Brørup[13] AC AC
MIS 5b 87 (peak) AC Devens/Early D.[12] Weichsel/Rederstall[13] AC AC
MIS 5a 82 (peak) AC Devens/Early D.[12] Weichsel/Odderade[13] AC AC
MIS 4 71-57 Würm Devens/Middle D.[12] Weichsel/Middle W.[13] Wisconsin Llanquihue
MIS 3 57-29 Würm Devens/Middle D.[12] Weichsel/Middle W.[13] Wisconsin Llanquihue
MIS 2 29-14 Würm/LGM Devens/Dimlington Weichsel/LGM Wisconsin/Vashon Llanquihue/LGM
MIS 1 14-present (Holocene) Flandria (Holocene) (Holocene) (Holocene)
Table explanation
Extensive interglacial (similar to Holocene)
Moderate interglacial
Intermediate climate
Moderate glaciation
Extensive glaciation (similar to LGM)
AC = Ambigous correlation

Sources

For sources to the tables, see the individual linked articles.

See also

References

  1. Walker, M., Johnsen, S., Rasmussen, S. O., Popp, T., Steffensen, J.-P., Gibbard, P., Hoek, W., Lowe, J., Andrews, J., Bjo¨ rck, S., Cwynar, L. C., Hughen, K., Kershaw, P., Kromer, B., Litt, T., Lowe, D. J., Nakagawa, T., Newnham, R., and Schwander, J. 2009. Formal definition and dating of the GSSP (Global Stratotype Section and Point) for the base of the Holocene using the Greenland NGRIP ice core, and selected auxiliary records. J. Quaternary Sci., Vol. 24 pp. 3–17. ISSN 0267-8179.
  2. Robert E. Kopp; Joseph L. Kirschvink; Isaac A. Hilburn & Cody Z. Nash (2005). "The Paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis". Proc. Natl. Acad. Sci. U.S.A. 102 (32): 11131–6. Bibcode:2005PNAS..10211131K. doi:10.1073/pnas.0504878102. PMC 1183582. PMID 16061801.
  3. "Chart". International Commission on Stratigraphy. Archived from the original on 2017-01-13. Retrieved 2017-02-14.
  4. 1 2 Miracle Planet: Snowball Earth, (2005) documentary, Canadian Film Board, rebroadcast 25 April 2009 on the Science Channel (HD).
  5. van Andel, Tjeerd H. (1994). New Views on an Old Planet: A History of Global Change (2nd ed.). Cambridge UK: Cambridge University Press. ISBN 0-521-44755-0.
  6. Rieu, Ruben; et al. (2007). "Climatic cycles during a Neoproterozoic "snowball" glacial epoch". Geology. 35 (4): 299–302. Bibcode:2007Geo....35..299R. doi:10.1130/G23400A.1. Archived from the original on 2012-05-16.
  7. Gibbard, P.; van Kolfschoten, T. (2004). "Chapter 22: The Pleistocene and Holocene Epochs" (PDF). In Gradstein, F. M.; Ogg, James G.; Smith, A. Gilbert. A Geologic Time Scale 2004. Cambridge: Cambridge University Press. ISBN 0-521-78142-6.
  8. 1 2 Davis, Owen K. "Non-Marine Records: Correlations with the Marine Sequence". Introduction to Quaternary Ecology. University of Arizona. Archived from the original on 2017-07-27.
  9. Kukla, George (August 2005). "Saalian supercycle, Mindel/Riss interglacial and Milankovitch's dating". Quaternary Science Reviews. 24 (14–15): 1573–83. Bibcode:2005QSRv...24.1573K. doi:10.1016/j.quascirev.2004.08.023.
  10. https://www.britannica.com/science/Menapian-Glacial-Stage
  11. Lisiecki, Lorraine E.; Raymo, Maureen E. (2005). "A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records". Bibcode:2005PalOc..20.1003L. doi:10.1029/2004PA001071.
  12. 1 2 3 4 5 6 Delaney, Catherine (2003). "The Last Glacial Stage (the Devensian) in Northwest England" (PDF). North West Geography. 3 (2): 27–37. ISSN 1476-1580.
  13. 1 2 3 4 5 6 Lokrantz, Hanna; Sohlenius, Gustav (2006). Ice marginal fluctuations during the Weichselian glaciation in Fennoscandia, a literature review (Technical Report TR-06-36) (PDF). Stockholm: Svensk Kärnbränslehantering AB (Swedish Nuclear Fuel and Waste Management Co).

The dictionary definition of glaciation at Wiktionary

  • Aber, J.S. (2006). "Regional Glaciation of Kansas and Nebraska". Emporia KA: Emporia State University.
  • Work Group on Geospatial Analysis of Glaciated Environments (GAGE) (2000). "Pre-Wisconsin Glaciation of Central North America". Emporia KA: INQUA Commission on Glaciation, Emporia State University. Archived from the original on May 13, 2008.
  • Subcommission on Quaternary Stratigraphy (2011). "Global correlation tables for the Quaternary". Cambridge UK: Department of Geography, University of Cambridge.
  • Gibbard, P.L.; Boreham, S.; Cohen, K.M.; Moscariello, A. (2011). "Global chronostratigraphical correlation table for the last 2.7 million years v. 2011". Cambridge UK: Subcommission on Quaternary Stratigraphy, Department of Geography, University of Cambridge.
  • Hambrey, M.J.; Harland, W.B., eds. (1981). Earth's pre-Pleistocene glacial record. Cambridge University Press. Archived from the original on October 11, 2006. 1004 + xv pp. (book downloadable as series of PDF files)
  • Silva, P.G.; Zazo,C; Bardají,T.; Baena, J.; Lario, J.; Rosas, A.; Van der Made (2009). "Tabla Cronoestratigráfica del Cuaternario AEQUA V.2" (PDF). Departamento de Geología, Universidad de Salamanca, Spain: Asociación Española para el Estudio del Cuaternario (AEQUA). Archived from the original (PDF 3.6 Mb) on 2012-06-26. (Correlation Chart of European Quaternary and cultural stages and fossils)
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.