Tetrahydro-2-furoic acid

Tetrahydro-2-furoic acid
Names
IUPAC name
Tetrahydro-2-furancarboxylic acid
Other names
Tetrahydro-2-furoic acid; Tetrahydrofuran-2-carboxylic acid; Tetrahydrofuroic acid
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.122.132
MeSH C063698
Properties
C5H8O3
Molar mass 116.12 g·mol−1
Density 1.262 g/cm3 @ 20 °C
Melting point 21 °C (70 °F; 294 K)
Boiling point 135 °C (275 °F; 408 K) 20 mmHg
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references

Tetrahydro-2-furoic acid is a low melting solid[1] or high boiling liquid,[2] depending on temperature. Tetrahydro-2-furoic acid is a useful pharmaceutical intermediate and is used in the process to several drugs, including Terazosin for the treatment of prostate enlargement and hypertension.[3]

Synthesis

Furoic acid was reduced to tetrahydro-2-furoic acid in 1913 by Wienhaus.[4] More recently, tetrahydro-2-furoic acid has been prepared via selective hydrogenation of 2-furoic acid over a bimetallic catalyst of palladium-nickel supported on alumina.[5]

Enantioselective heterogeneous hydrogenation of furoic acid to chiral tetrahydro-2-furoic acid was achieved in the presence of cinchonidine-modified alumina supported palladium catalyst in 95% yield and 32% enantiomeric excess.[6] Similarly, homogeneous hydrogenation to chiral tetrahydro-2-furoic acid was accomplished in 100% yield and 24-27% enantiomeric excess in methanol solution employing a chiral, phosphine modified ferrocene catalyst.[7]

Applications

Pharmaceuticals

Reaction of tetrahydro-2-furoic acid with the hydrochloride salt of 3-[(4-amino-6,7-dimethoxy-2-quinazolinyl)methylamino]-propanenitrile provided Alfuzosin, a drug for the treatment of benign prostatic hyperplasia (BPH).[8]

A key intermediate to Faropenem, an antibiotic for the treatment of acute bacterial sinusitis, chronic bronchitis and pneumonia has been prepared from tetrahydro-2-furoic acid via a process including chiral resolution and chlorination.[9]

Tecadenoson is another example of a drug made using tetrahydro-2-furoic acid.

Synthesis

  • Tetrahydrofurfuryl alcohol (THFA) precursor to dihydropyran.

References

  1. Franco Codignola and Mario Piacenza, "A process for the production of polyurethane resins", Italian Patent (1947), ES179144 (A1).
  2. Raymond Paul; Tchelitcheff, Serge (1952). "Action of oragno-sodium derivatives on vinyl ethers". Compt. Rend. 235: 1226–8.
  3. Wen-Chih Chou, Ming-Chen Chou, Yann-Yu Lu and Shyh-Fong Chen, "Preparation of N-acylalkylenediamines as precursors of antihypertensive quinazolines", US Patent (2001), 6313293(B1).
  4. Heinrich Wienhaus; Sorge, Hermann (1913). "Reduction of Pyromucic Acid". Berichte der Deutschen Chemischen Gesellschaft. 46: 1927–31. doi:10.1002/cber.191304602107.
  5. Zhe-qi Li; Ding, Yun-jie; Jiang, Wen-feng (2005). "Study on the performance of α-furanoic acid hydrogenation over Pd-Ni/Al2O3 catalysts under mild conditions". Fenzi Cuihua. 19 (2): 131–135.
  6. Mihaela Maris; Huck, Wolf-Rudiger; Mallat, Tamas; Baiker, Alfons (2003). "Palladium-catalyzed asymmetric hydrogenation of furan carboxylic acids". Journal of Catalysis. 219 (1): 52–58. doi:10.1016/s0021-9517(03)00184-2.
  7. Martin Studer; Wedemeyer-Exl, Christina; Spindler, Felix; Blaser, Hans-Ulrich (2000). "Enantioselective homogeneous hydrogenation of monosubstituted pyridines and furans". Monatshefte fuer Chemie. 131 (12): 1335–1343. doi:10.1007/s007060070013.
  8. Uday Rajaram Bapat , Jose Paul Potams, Narasimhan Subramanian and Jon Valgeirsson, "Process for the preparation of alfuzosin and salts thereof ", PCT Int. Appl. (2008), 2008152514.
  9. Hongna Han; Jin, Jie; Liu, Jun (2001). "Synthesis of key intermediate of faropenem: (3S,4R)-3-[1- ethyl]-4-(tetrahydrofuran-2- carbonylmercapto)-2-azetidinone". Shenyang Yaoke Daxue Xuebao. 18 (1): 20–22.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.