Nitroguanidine

Nitroguanidine
Names
IUPAC name
1-Nitroguanidine
Other names
Picrite
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.008.313
Properties
CH4N4O2
Molar mass 104.07 g/mol
Appearance Colorless crystalline solid
Density 1.71 g/cm3
Melting point 232 °C (450 °F; 505 K)
Boiling point 250 °C (482 °F; 523 K) (decomposes)
Explosive data
RE factor 1.00
Hazards
Main hazards Explosive
Related compounds
Related compounds
Guanidine
Guanidine nitrate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☑Y verify (what is ☑Y☒N ?)
Infobox references

Nitroguanidine is an organic compound with the formula (NH2)2CNNO2. It is a colorless, crystalline solid that melts at 232 °C and decomposes at 250 °C. It is very flammable; but has a low impact sensitivity; however, its detonation velocity is high. It is used as a propellant (air bags), fertilizer, and for other purposes.

Manufacture

Nitroguanidine is produced commercially by a two step process starting with the reaction of calcium cyanamide with ammonium nitrate. Via the intermediacy of biguanidine, this ammonolysis step affords the salt guanidinium nitrate. In the second step, the nitrate salt is treated with sulfuric acid, a process that dehydrates the salt and forms the N-N bond.[1]

[C(NH2)3]NO3 → (NH2)2CNNO2 + H2O

Nitroguanidine can also be generated by treatment of urea with ammonium nitrate. Owing to problems of reliability and safety, this process has not been commerciallized despite its attractive economic features.

Uses

Explosives

Nitroguanidine is used as an explosive propellant, notably in triple-base smokeless powder. The nitroguanidine reduces the propellant's flash and flame temperature without sacrificing chamber pressure. These are typically used in large bore guns where barrel erosion and flash are particularly important to avoid.

Nitroguanidine's explosive decomposition is given by the following equation: H4N4CO2 (s) 2 H2O (g) + 2 N2 (g) + C (s)

Pesticides

Nitroguanidine derivatives are used as insecticides, having a comparable effect to nicotine. Derivatives include clothianidin, dinotefuran, imidacloprid, and thiamethoxam.

Biochemistry

The nitrosoylated derivative nitrosoguanidine is often used to mutagenize bacterial cells for biochemical studies.

Structure

Nitroguanidine exists in two tautomeric forms, as a nitroimine (left) or a nitroamine (right). In solution and in the solid state, the nitroimine form predominates (resonance stabilized).[2][3]

References

  1. Thomas Güthner, Bernd Mertschenk and Bernd Schulz "Guanidine and Derivatives" in Ullmann's Encyclopedia of Industrial Chemistry, 2006, Wiley-VCH, Weinheim. doi:10.1002/14356007.a12_545.pub2
  2. Bulusu, S.; Dudley, R. L.; Autera, J. R. (1987). "Structure of nitroguanidine: nitroamine or nitroimine? New NMR evidence from nitrogen-15 labeled sample and nitrogen-15 spin coupling constants". Magnetic Resonance in Chemistry. 25 (3): 234–238. doi:10.1002/mrc.1260250311.
  3. Murmann, R. K.; Glaser, Rainer; Barnes, Charles L. (2005). "Structures of nitroso- and nitroguanidine x - ray crystallography and computational analysis". Journal of Chemical Crystallography. 35 (4): 317–325. doi:10.1007/s10870-005-3252-y.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.