NGC 4993

NGC 4993
NGC 4993 and GRB 170817A afterglow.[1]
Observation data (J2000 epoch)
Constellation Hydra
Right ascension 13h 09m 47.7s[2]
Declination −23° 23 02[2]
Redshift 0.009727[2]
Helio radial velocity 2916 km/s[2]
Distance (comoving) 44.1 Mpc (144 Mly)[2]
Group or cluster NGC 4993 Group[3]
Apparent magnitude (V) 13.32[2]
Characteristics
Type (R')SAB0^-(rs)[2]
Size ~55,000 ly (17 kpc) (estimated)[2]
Apparent size (V) 1.3 x 1.1[2]
Notable features Host of neutron star merger detected as gravitational wave GW170817 and gamma-ray burst GRB 170817A
Other designations
NGC 4994, ESO 508-18, AM 1307-230, MCG -4-31-39, PGC 45657, WH III 766[4]

Coordinates: 13h 09m 47.2s, −23° 23′ 4″

NGC 4993 starmap near ψ Hydrae, near galaxies of NGC 4968, NGC 4970, NGC 5042, IC 4180, IC 4197

NGC 4993 (also catalogued as NGC 4994) is an elliptical galaxy or lenticular galaxy[5] located about 140 million light-years away[6] in the constellation Hydra.[7] It was discovered on 26 March 1789[8] by William Herschel[7][8] and is a member of the NGC 4993 Group.[3]

NGC 4993 is the site of the first astronomical event detected in both electromagnetic and gravitational radiation, the collision of two neutron stars, a discovery given the Breakthrough of the Year award for 2017 by the journal Science.[9][10] Detecting a gravitational wave event associated with the gamma-ray burst provided direct confirmation that binary neutron star collisions produce short gamma-ray bursts.[11]

Physical characteristics

NGC 4993 has several concentric shells of stars and large dust lane with diameter of approximately a few kiloparsecs which surrounds the nucleus and is stretched out into an "s" shape. The dust lane appears to be connected to a small dust ring with a diameter of ~330 ly (0.1 kpc).[12] These features in NGC 4993 may be the result[13] of a recent merger with a gaseous late-type galaxy that occurred about 400 million years ago.[14] However, Palmese et al. suggested that the galaxy involved in the merger was a gas-poor galaxy.[15]

Dark Matter

NGC 4993 has a dark matter halo with an estimated mass of 193.9×1010 M.[14]

Globular Clusters

NGC 4993 has an estimated population of 250 globular clusters.[5]

The luminosity of NGC 4993 indicates that the globular cluster system surrounding the galaxy may be dominated by metal-poor globular clusters.[16]

Supermassive Black Hole

NGC 4993 has a supermassive black hole with an estimated mass of roughly 80 to 100 million solar masses (8×107 M).[17]

Activity

The presence of weak OIII, NII and SII emission lines in the nucleus of NGC 4993 and the relatively high ratio of [NII]λ6583/Hα suggest that NGC 4993 is a low-luminosity AGN (LLAGN).[17] The activity may have been triggered by gas from the late-type galaxy as it merged with NGC 4993.[14]

Neutron star merger observations

In August 2017, rumors circulated [18] that a short gamma-ray burst named GRB 170817A, of the sort conjectured to be emitted in the collision of two neutron stars,[19] was detected in this galaxy. On 16 October 2017, the LIGO and Virgo collaborations officially announced the detection of a gravitational wave, named GW170817, seconds before the gamma-ray burst. The gravitational wave signal matched what was predicted for the merger of two neutron stars.[1][20][21][22][23]

AT 2017gfo (also known as SSS17a) is a transient astronomical event believed to be a kilonova, which was observed in NGC 4993 on 17 August 2017, 11 hours after a gravitational wave detection that alerted astronomers to search for an optical counterpart.

GW170817 was a gravitational wave signal observed by the LIGO/Virgo collaboration on 17 August 2017. It triggered a search for a corresponding electromagnetic signal, and the discovery of AT 2017gfo marked the first time one was observed.[20] The gravitational wave signal, which had a duration of about 100 seconds, is the first gravitational wave detection of the merger of two neutron stars, and was associated with GRB 170817A.[22][23][24][25]

GRB 170817A was a gamma-ray burst (GRB) detected by NASA's Fermi and ESA's INTEGRAL on 17 August 2017.[18][26][27][28] Although only localized to a large area of the sky, it is believed to correspond to the other two observations,[24] in part due to its arrival time 1.7 seconds after the GW event.

See also

References

  1. 1 2 Chou, Felicia; Washington, Dewayne; Porter, Molly (16 October 2017). "Release 17-083 - NASA Missions Catch First Light from a Gravitational-Wave Event". NASA. Retrieved 21 October 2017.
  2. 1 2 3 4 5 6 7 8 9 "NASA/IPAC Extragalactic Database". Results for NGC 4993. Retrieved 2018-06-03.
  3. 1 2 Hjorth, Jens; Levan, Andrew J.; Tanvir, Nial R.; Lyman, Joe D.; Wojtak, Radosław; Schrøder, Sophie L.; Mandel, Ilya; Gall, Christa; Bruun, Sofie H. (2017-10-16). "The Distance to NGC 4993: The Host Galaxy of the Gravitational-wave Event GW170817". The Astrophysical Journal. 848 (2): L31. arXiv:1710.05856. Bibcode:2017ApJ...848L..31H. doi:10.3847/2041-8213/aa9110. hdl:2381/41880.
  4. Staff (2017). "Galaxy NGC 4993 - Galaxy in Hydra Constellation". dso-browser.com. Retrieved 30 September 2017.
  5. 1 2 Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X. (2017-12-01). "On the Progenitor of Binary Neutron Star Merger GW170817". The Astrophysical Journal. 850 (2): L40. arXiv:1710.05838. Bibcode:2017ApJ...850L..40A. doi:10.3847/2041-8213/aa93fc.
  6. "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2018-06-05.
  7. 1 2 "NGC 4993". Deep Sky Observer's Companion. Retrieved 28 August 2017.
  8. 1 2 "New General Catalog Objects: NGC 4950 - 4999". cseligman.com. Retrieved 2018-06-05.
  9. "Breakthrough of the year 2017". Science | AAAS. 22 December 2017.
  10. Cho, Adrian (2017). "Cosmic convergence". Science. 358 (6370): 1520–1521. Bibcode:2017Sci...358.1520C. doi:10.1126/science.358.6370.1520. PMID 29269456.
  11. Overbye, Dennis (16 October 2017). "LIGO Detects Fierce Collision of Neutron Stars for the First Time". The New York Times. Retrieved 16 October 2017.
  12. Blanchard, P. K.; Berger, E.; Fong, W.; Nicholl, M.; Leja, J.; Conroy, C.; Alexander, K. D.; Margutti, R.; Williams, P. K. G. (2017-10-16). "The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale". The Astrophysical Journal. 848 (2): L22. arXiv:1710.05458. Bibcode:2017ApJ...848L..22B. doi:10.3847/2041-8213/aa9055.
  13. Im, Myungshin; Yoon, Yongmin; Lee, Seong-Kook J.; Lee, Hyung Mok; Kim, Joonho; Lee, Chung-Uk; Kim, Seung-Lee; Troja, Eleonora; Choi, Changsu (2017-10-26). "Distance and Properties of NGC 4993 as the Host Galaxy of the Gravitational-wave Source GW170817". The Astrophysical Journal. 849 (1): L16. arXiv:1710.05861. Bibcode:2017ApJ...849L..16I. doi:10.3847/2041-8213/aa9367.
  14. 1 2 3 Ebrová, Ivana; Bílek, Michal (1 January 2018). "NGC 4993 the shell galaxy host of GW170817: constraints on the recent galactic merger". arXiv:1801.01493 [astro-ph.GA].
  15. Palmese, A.; Hartley, W.; Tarsitano, F.; Conselice, C.; Lahav, O.; Allam, S.; Annis, J.; Lin, H.; Soares-Santos, M. (2017-11-09). "Evidence for Dynamically Driven Formation of the GW170817 Neutron Star Binary in NGC 4993". The Astrophysical Journal. 849 (2): L34. arXiv:1710.06748. Bibcode:2017ApJ...849L..34P. doi:10.3847/2041-8213/aa9660.
  16. Lee, Myung Gyoon; Kang, Jisu; Im, Myungshin (20 May 2018). "A Globular Cluster Luminosity Function Distance to NGC 4993 Hosting a Binary Neutron Star Merger GW170817/GRB 170817A". The Astrophysical Journal Letters. 859: 1–8. arXiv:1805.01127. Bibcode:2018ApJ...859L...6L. doi:10.3847/2041-8213/aac2e9.
  17. 1 2 Wu, Qingwen; Feng, Jianchao; Fan, Xuliang (6 March 2018). "The Possible Submillimeter Bump and Accretion-jet in the Central Supermassive Black Hole of NGC 4993". The Astrophysical Journal. 855: 1–7. arXiv:1710.09590. Bibcode:2018ApJ...855...46W.
  18. 1 2 Drake, Nadia (25 August 2017). "Strange Stars Caught Wrinkling Spacetime? Get the Facts". National Geographic. Retrieved 27 August 2017.
  19. Nakar, E. (2007). "Short-hard gamma-ray bursts". Physics Reports. 442: 166–236. arXiv:astro-ph/0701748. Bibcode:2007PhR...442..166N. CiteSeerX 10.1.1.317.1544. doi:10.1016/j.physrep.2007.02.005.
  20. 1 2 Landau, Elizabeth; Chou, Felicia; Washington, Dewayne; Porter, Molly (16 October 2017). "NASA Missions Catch First Light from a Gravitational-Wave Event". NASA. Retrieved 16 October 2017.
  21. Abbott, B. P.; et al. (16 October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters. 119 (16): 161101. arXiv:1710.05832. Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. PMID 29099225.
  22. 1 2 Cho, Adrian (16 October 2017). "Merging neutron stars generate gravitational waves and a celestial light show". Science. doi:10.1126/science.aar2149. Retrieved 16 October 2017.
  23. 1 2 Krieger, Lisa M. (16 October 2017). "A Bright Light Seen Across The Universe, Proving Einstein Right - Violent collisions source of our gold, silver". The Mercury News. Retrieved 16 October 2017.
  24. 1 2 Overbye, Dennis (16 October 2017). "LIGO Detects Fierce Collision of Neutron Stars for the First Time". The New York Times. Retrieved 16 October 2017.
  25. Abbott, B. P.; et al. (LIGO Scientific Collaboration & Virgo Collaboration) (16 October 2017). "GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral". Physical Review Letters. 119 (16): 161101. arXiv:1710.05832. Bibcode:2017PhRvL.119p1101A. doi:10.1103/PhysRevLett.119.161101. PMID 29099225.
  26. Kienlin, Andreas von (17 August 2017). "GCN Circular; Number: 21520; GRB 170817A: Fermi GBM detection; 2017/08/17 20:00:07 GMT". Max Planck Institute for Extraterrestrial Physics. Retrieved 28 August 2017.
  27. Castelvecchi, Davide (25 August 2017). "Rumours swell over new kind of gravitational-wave sighting". Nature News. doi:10.1038/nature.2017.22482. Retrieved 27 August 2017.
  28. Sokol, Joshua (25 August 2017). "What Happens When Two Neutron Stars Collide?". Wired. Retrieved 28 August 2017.
  • "NGC 4993". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 28 August 2017.
  • "NGC 4993". DSO Browser. Retrieved 28 August 2017.
  • Courtney Seligman. "New General Catalog Objects: NGC 4950 – 4999". Retrieved 28 August 2017.
  • Hartmut Frommert. "Revised NGC Data for NGC 4993". SEDS. Retrieved 28 August 2017.
  • GRB 170817ANASA/IPAC Extragalactic Database (NED)
  • GRB 170817AMax Planck Institute for Extraterrestrial Physics (MPE)
  • GRB 170817A - INTEGRAL Science Data Center (ISDC)
  • Starmap
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.