Fibonacci prime

Fibonacci prime
No. of known terms 51
Conjectured no. of terms Infinite[1]
First terms 2, 3, 5, 13, 89, 233
Largest known term F3340367
OEIS index
  • A001605
  • Indices of prime Fibonacci numbers

A Fibonacci prime is a Fibonacci number that is prime, a type of integer sequence prime.

The first Fibonacci primes are (sequence A005478 in the OEIS):

2, 3, 5, 13, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, ....

Known Fibonacci primes

Unsolved problem in mathematics:
Are there an infinite number of Fibonacci primes?
(more unsolved problems in mathematics)

It is not known whether there are infinitely many Fibonacci primes. With the indexing starting with F1 = F2 = 1, the first 34 are Fn for the n values (sequence A001605 in the OEIS):

n = 3, 4, 5, 7, 11, 13, 17, 23, 29, 43, 47, 83, 131, 137, 359, 431, 433, 449, 509, 569, 571, 2971, 4723, 5387, 9311, 9677, 14431, 25561, 30757, 35999, 37511, 50833, 81839, 104911.

In addition to these proven Fibonacci primes, there have been found probable primes for

n = 130021, 148091, 201107, 397379, 433781, 590041, 593689, 604711, 931517, 1049897, 1285607, 1636007, 1803059, 1968721, 2904353, 3244369, 3340367.[2]

Except for the case n = 4, all Fibonacci primes have a prime index, because if a divides b, then also divides , but not every prime is the index of a Fibonacci prime.

Fp is prime for 8 of the first 10 primes p; the exceptions are F2 = 1 and F19 = 4181 = 37 × 113. However, Fibonacci primes appear to become rarer as the index increases. Fp is prime for only 26 of the 1,229 primes p below 10,000.[3] The number of prime factors in the Fibonacci numbers with prime index are:

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 2, 2, 3, 2, 2, 2, 1, 2, 4, 2, 3, 2, 2, 2, 2, 1, 1, 3, 4, 2, 4, 4, 2, 2, 3, 3, 2, 2, 4, 2, 4, 4, 2, 5, 3, 4, 3, 2, 3, 3, 4, 2, 2, 3, 4, 2, 4, 4, 4, 3, 2, 3, 5, 4, 2, 1, ... (sequence A080345 in the OEIS)

As of March 2017, the largest known certain Fibonacci prime is F104911, with 21925 digits. It was proved prime by Mathew Steine and Bouk de Water in 2015.[4] The largest known probable Fibonacci prime is F3340367. It was found by Henri Lifchitz in 2018.[2] It was shown by Nick MacKinnon that the only Fibonacci numbers that are also members of the set of prime twins are 3, 5 and 13.[5]

Divisibility of Fibonacci numbers

A prime divides if and only if p is congruent to ±1 modulo 5, and p divides if and only if is congruent to ±2 modulo 5. (For p = 5, F5 = 5 so 5 divides F5)

Fibonacci numbers that have a prime index p do not share any common divisors greater than 1 with the preceding Fibonacci numbers, due to the identity:[6]

which implies the infinitude of primes.

For n  3, Fn divides Fm iff n divides m.[7]

If we suppose that m is a prime number p, and n is less than p, then it is clear that Fp, cannot share any common divisors with the preceding Fibonacci numbers.

This means that Fp will always have characteristic factors or be a prime characteristic factor itself. The number of distinct prime factors of each Fibonacci number can be put into simple terms.

  • Fnk is a multiple of Fk for all values of n and k from 1 up.[8] It's safe to say that Fnk will have "at least" the same number of distinct prime factors as Fk. All Fp will have no factors of Fk, but "at least" one new characteristic prime from Carmichael's theorem.
  • Carmichael's Theorem applies to all Fibonacci numbers except 4 special cases: and If we look at the prime factors of a Fibonacci number, there will be at least one of them that has never before appeared as a factor in any earlier Fibonacci number. Let πn be the number of distinct prime factors of Fn. (sequence A022307 in the OEIS)
If k | n then except for
If k = 1, and n is an odd prime, then 1 | p and
n 012345678910111213141516171819202122232425
Fn 0112358132134558914423337761098715972584418167651094617711286574636875025
πn 00011111222121233132432142

The first step in finding the characteristic quotient of any Fn is to divide out the prime factors of all earlier Fibonacci numbers Fk for which k | n.[9]

The exact quotients left over are prime factors that have not yet appeared.

If p and q are both primes, then all factors of Fpq are characteristic, except for those of Fp and Fq.

Therefore:

The number of distinct prime factors of the Fibonacci numbers with a prime index is directly relevant to the counting function. (sequence A080345 in the OEIS)

p 2357111317192329313741434753596167717379838997
πp 0111111211232112223222124

Rank of Apparition

For a prime p, the smallest index u > 0 such that Fu is divisible by p is called the rank of apparition (sometimes called Fibonacci entry point) of p and denoted a(p). The rank of apparition a(p) is defined for every prime p.[10] The rank of apparition divides the Pisano period π(p) and allows to determine all Fibonacci numbers divisible by p.[11]

For the divisibility of Fibonacci numbers by powers of a prime, and

In particular

Wall-Sun-Sun primes

A prime p ≠ 2, 5 is called a Fibonacci–Wieferich prime or a Wall-Sun-Sun prime if where

in which is the Legendre symbol defined as:

It is known that for p ≠ 2, 5, a(p) is a divisor of:[12]

For every prime p that is not a Wall-Sun-Sun prime, as illustrated in the table below:

p 23571113171923293137414347535961
a(p) 345810791824143019204416275815
a(p2) 612255611091153342552406930703820189275214313422915

The existence of Wall-Sun-Sun primes is conjectural.

Fibonacci primitive part

The primitive part of the Fibonacci numbers are

1, 1, 2, 3, 5, 4, 13, 7, 17, 11, 89, 6, 233, 29, 61, 47, 1597, 19, 4181, 41, 421, 199, 28657, 46, 15005, 521, 5777, 281, 514229, 31, 1346269, 2207, 19801, 3571, 141961, 321, 24157817, 9349, 135721, 2161, 165580141, 211, 433494437, 13201, 109441, ... (sequence A061446 in the OEIS)

The product of the primitive prime factors of the Fibonacci numbers are

1, 1, 2, 3, 5, 1, 13, 7, 17, 11, 89, 1, 233, 29, 61, 47, 1597, 19, 4181, 41, 421, 199, 28657, 23, 3001, 521, 5777, 281, 514229, 31, 1346269, 2207, 19801, 3571, 141961, 107, 24157817, 9349, 135721, 2161, 165580141, 211, 433494437, 13201, 109441, 64079, 2971215073, 1103, 598364773, 15251, ... (sequence A178763 in the OEIS)

The first case of more than one primitive prime factor is 4181 = 37 × 113 for .

The primitive part has a non-primitive prime factor in some cases. The ratio between the two above sequences is

1, 1, 1, 1, 1, 4, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 1, 1, .... (sequence A178764 in the OEIS)

The natural numbers n for which has exactly one primitive prime factor are

3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 43, 45, 47, 48, 51, 52, 54, 56, 60, 62, 63, 65, 66, 72, 74, 75, 76, 82, 83, 93, 94, 98, 105, 106, 108, 111, 112, 119, 121, 122, 123, 124, 125, 131, 132, 135, 136, 137, 140, 142, 144, 145, ... (sequence A152012 in the OEIS)

If and only if a prime p is in this sequence, then is a Fibonacci prime, and if and only if 2p is in this sequence, then is a Lucas prime (where is the Lucas sequence), and if and only if 2n is in this sequence, then is a Lucas prime.

Number of primitive prime factors of are

0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 1, 2, 1, 1, 3, 2, 3, 2, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 3, 1, 1, 2, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 3, 2, 4, 1, 2, 2, 2, 2, 3, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, ... (sequence A086597 in the OEIS)

The least primitive prime factor of are

1, 1, 2, 3, 5, 1, 13, 7, 17, 11, 89, 1, 233, 29, 61, 47, 1597, 19, 37, 41, 421, 199, 28657, 23, 3001, 521, 53, 281, 514229, 31, 557, 2207, 19801, 3571, 141961, 107, 73, 9349, 135721, 2161, 2789, 211, 433494437, 43, 109441, 139, 2971215073, 1103, 97, 101, ... (sequence A001578 in the OEIS)

See also

References

  1. http://mathworld.wolfram.com/FibonacciPrime.html
  2. 1 2 PRP Top Records, Search for : F(n). Retrieved 2018-04-05.
  3. Sloane's A005478, A001605
  4. Chris Caldwell, The Prime Database: U(104911) from the Prime Pages. Status: Fibonacci number, Elliptic Curve Primality Proof. Retrieved 2018-04-05.
  5. N. MacKinnon, Problem 10844, Amer. Math. Monthly 109, (2002), p. 78
  6. Paulo Ribenboim, My Numbers, My Friends, Springer-Verlag 2000
  7. Wells 1986, p.65
  8. The mathematical magic of Fibonacci numbers Factors of Fibonacci numbers
  9. Jarden - Recurring sequences, Volume 1, Fibonacci quarterly, by Brother U. Alfred
  10. (sequence A001602 in the OEIS)
  11. John Vinson (1963). "The Relation of the Period Modulo m to the Rank of Apparition of m in the Fibonacci Sequence" (PDF). Fibonacci Quarterly. 1: 37–45.
  12. Steven Vajda. Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications. Dover Books on Mathematics.
  • Weisstein, Eric W. "Fibonacci Prime". MathWorld.
  • R. Knott Fibonacci primes
  • Caldwell, Chris. Fibonacci number, Fibonacci prime, and Record Fibonacci primes at the Prime Pages
  • Factorization of the first 300 Fibonacci numbers
  • Factorization of Fibonacci and Lucas numbers
  • Small parallel Haskell program to find probable Fibonacci primes at haskell.org
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.