Aeropyrum pernix

Aeropyrum pernix
Scientific classification
Domain: Archaea
Phylum: Crenarchaeota
Class: Thermoprotei
Order: Desulfurococcales
Family: Desulfurococcaceae
Genus: Aeropyrum
Species: A. pernix
Binomial name
Aeropyrum pernix
Sako et al. 1996

Aeropyrum pernix is a species of extremophile archaean in the archaean phylum Crenarchaeota. It is an obligatorily thermophilic species. The first specimens were isolated from sediments in the sea off the coast of Japan.

Discovery

Aeropyrum pernix was the first strictly aerobic hyperthermophilic Archaea to be discovered. It was originally isolated from heated marine sediments and venting water collected in 1996 from a solfataric vent at Kodakara-jima Island in Kyūshū, Japan.[1]

Genome structure

Its complete genome was sequenced in 1999 and is 1,669 kilobases in size, with 2,694 possible genes detected.[2] All of the genes in the TCA cycle were found except for that of α-ketoglutarate dehydrogenase. In its place, the genes coding for the two subunits of 2-oxoacid:ferredoxin oxidoreductase were identified.

Properties

The cells of Aeropyrum pernix are spherical in shape and approximately 1 µm in diameter. The envelope surrounding the cells of Aeropyrum is about 25 nm wide. The organisms grows at temperature between 70 and 100 °C (optimum, 90 to 95 °C), at pH 5 to 9 (optimum, pH 7), and at a salinity of 1.8 to 7% (optimum, 3.5% salinity). The growth of the organisms is not detected at 68 or 102 °C. Below 1.5% salinity, cells lyse by low osmotic shock. The cells of the organisms are sensitive to chloramphenicol and insensitive to ampicillin, vancomycin, and cycloserine. It grows well on proteinaceous substances, with a doubling time under these conditions of about 200 minutes.[1]

References

  1. 1 2 Sako Y, Nomura N, Uchida A, et al. (1996). "Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 degrees C" (PDF). Int. J. Syst. Bacteriol. 46 (4): 1070–7. doi:10.1099/00207713-46-4-1070. PMID 8863437. Archived from the original (PDF) on 2008-12-02. Retrieved 2007-11-23.
  2. Kawarabayasi Y, Hino Y, Horikawa H, et al. (1999). "Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1" (PDF). DNA Res. 6 (2): 83–101, 145–52. doi:10.1093/dnares/6.2.83. PMID 10382966.

Further reading

  • Bhuiya, Mohammad Wadud; Suryadi, Jimmy; Zhou, Zholi; Brown, Bernard Andrew, II (5 August 2013). "Structure of the Aeropyrum pernix L7Ae multifunctional protein and insight into its extreme thermostability". Acta Crystallographica Section F. 69 (Pt 9): 979–988. doi:10.1107/S1744309113021799. PMC 3758144.
  • Daifuku, Takashi; Yoshida, Takashi; Takayuki, Kitamura; Kawaichi, Satoshi; Inoue, Takahiro; Nomura, Keigo; Yoshida, Yui; Kuno, Sotaro; Sako, Yoshihiko (19 July 2013). "Variation of the Virus-Related Elements within Syntenic Genomes of the Hyperthermophilic Archaeon Aeropyrum". Appl. Environ. Microbiol. 79 (19): 5891. doi:10.1128/AEM.01089-13. PMC 3811351. PMID 23872576. Retrieved 6 November 2014.
  • Lee, Pyung Cheon; Mijts, Benjamin N.; Petri, Ralf; Watts, Kevin T.; Schmidt-Dannert, Claudia (16 June 2004). "Alteration of product specificity of Aeropyrum pernix farnesylgeranyl diphosphate synthase (Fgs) by directed evolution". Protein Engineering Design & Selection. 17 (11): 771–777. doi:10.1093/protein/gzh089. PMID 15548566.
  • Ota, Ajda; Gmajner, Dejan; Sentijurc, Marjeta; Ulrih, Natasa Poklar (13 April 2012). "Effect of Growth Medium pH of Aeropyrum peering on Structural Properties and Fluidity of Archaeosomes". Archaea. 2012: 9. doi:10.1155/2012/285152. Retrieved 1 Nov 2014.
  • Sakuraba, Haruhiko; Satoura, Takenori; Kawakam, Ryushi; Kim, Kwang; Kara, Yusuke; Yoneda, Kazunari; Ohshima, Toshihisa (April 16, 2012). "Crystal Structure of Novel Dye- linked L-Proline Dehydrogenase from Hyperthermophilic Archaeon Aeropyrum Pernix". The Journal of Biological Chemistry. 287 (24): 20070–20080. doi:10.1074/jbc.M111.319038. PMC 3370190. PMID 22511758. Retrieved 6 November 2014.

Napotnik, T.B.; Valant, J.; Gmajner, D.; Passamonti, S.; Miklavcic, D.; Ulrih, N.P. (September 2013). "Cytotoxicity and uptake of archaeosomes prepared from Aeropyrum pernix lipids". Human & Experimental Toxicology. 32 (9): 950–959. doi:10.1177/0960327113477875. Retrieved 12 November 2014.

This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.