ATP6V0E1

ATP6V0E1
Identifiers
AliasesATP6V0E1, ATP6H, ATP6V0E, M9.2, Vma21, Vma21p, ATPase H+ transporting V0 subunit e1
External IDsMGI: 1328318 HomoloGene: 2931 GeneCards: ATP6V0E1
Gene location (Human)
Chr.Chromosome 5 (human)[1]
Band5q35.1Start172,983,757 bp[1]
End173,035,445 bp[1]
RNA expression pattern
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez

8992

11974

Ensembl

ENSG00000113732

ENSMUSG00000015575

UniProt

O15342

Q9CQD8

RefSeq (mRNA)

NM_003945

NM_025272

RefSeq (protein)

NP_003936

NP_079548

Location (UCSC)Chr 5: 172.98 – 173.04 MbChr 17: 26.68 – 26.7 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

V-type proton ATPase subunit e 1 is an enzyme that in humans is encoded by the ATP6V0E1 gene.[5][6][7]

This gene encodes a component of vacuolar ATPase (V-ATPase), a multisubunit enzyme that mediates acidification of eukaryotic intracellular organelles. V-ATPase dependent organelle acidification is necessary for such intracellular processes as protein sorting, zymogen activation, receptor-mediated endocytosis, and synaptic vesicle proton gradient generation. V-ATPase is composed of a cytosolic V1 domain and a transmembrane V0 domain. The V1 domain consists of three A and three B subunits, two G subunits plus the C, D, E, F, and H subunits. The V1 domain contains the ATP catalytic site. The V0 domain consists of five different subunits: a, c, c', c", and d. Additional isoforms of many of the V1 and V0 subunit proteins are encoded by multiple genes or alternatively spliced transcript variants. This encoded protein is possibly part of the V0 subunit. Since two nontranscribed pseudogenes have been found in dogs, it is possible that the localization to chromosome 2 for this gene by radiation hybrid mapping is representing a pseudogene. Genomic mapping puts the chromosomal location on 5q35.3.[7]

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000113732 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000015575 - Ensembl, May 2017
  3. "Human PubMed Reference:".
  4. "Mouse PubMed Reference:".
  5. Ludwig J, Kerscher S, Brandt U, Pfeiffer K, Getlawi F, Apps DK, Schagger H (Jun 1998). "Identification and characterization of a novel 9.2-kDa membrane sector-associated protein of vacuolar proton-ATPase from chromaffin granules". J Biol Chem. 273 (18): 10939–10947. doi:10.1074/jbc.273.18.10939. PMID 9556572.
  6. Sambade M, Kane PM (Apr 2004). "proton-translocating". J Biol Chem. 279 (17): 17361–17365. doi:10.1074/jbc.M314104200. PMID 14970230.
  7. 1 2 "Entrez Gene: ATP6V0E1 ATPase, H+ transporting, lysosomal 9kDa, V0 subunit e1".

Further reading

  • Finbow ME, Harrison MA (1997). "The vacuolar H+-ATPase: a universal proton pump of eukaryotes". Biochem. J. 324 (3): 697–712. doi:10.1042/bj3240697. PMC 1218484. PMID 9210392.
  • Stevens TH, Forgac M (1998). "Structure, function and regulation of the vacuolar (H+)-ATPase". Annu. Rev. Cell Dev. Biol. 13: 779–808. doi:10.1146/annurev.cellbio.13.1.779. PMID 9442887.
  • Nelson N, Harvey WR (1999). "Vacuolar and plasma membrane proton-adenosinetriphosphatases". Physiol. Rev. 79 (2): 361–85. PMID 10221984.
  • Forgac M (1999). "Structure and properties of the vacuolar (H+)-ATPases". J. Biol. Chem. 274 (19): 12951–12954. doi:10.1074/jbc.274.19.12951. PMID 10224039.
  • Kane PM (1999). "Introduction: V-ATPases 1992-1998". J. Bioenerg. Biomembr. 31 (1): 3–5. doi:10.1023/A:1001884227654. PMID 10340843.
  • Wieczorek H, Brown D, Grinstein S, et al. (1999). "Animal plasma membrane energization by proton-motive V-ATPases". BioEssays. 21 (8): 637–648. doi:10.1002/(SICI)1521-1878(199908)21:8<637::AID-BIES3>3.0.CO;2-W. PMID 10440860.
  • Nishi T, Forgac M (2002). "The vacuolar (H+)-ATPases--nature's most versatile proton pumps". Nat. Rev. Mol. Cell Biol. 3 (2): 94–103. doi:10.1038/nrm729. PMID 11836511.
  • Kawasaki-Nishi S, Nishi T, Forgac M (2003). "Proton translocation driven by ATP hydrolysis in V-ATPases". FEBS Lett. 545 (1): 76–85. doi:10.1016/S0014-5793(03)00396-X. PMID 12788495.
  • Morel N (2004). "Neurotransmitter release: the dark side of the vacuolar-H+ATPase". Biol. Cell. 95 (7): 453–457. doi:10.1016/S0248-4900(03)00075-3. PMID 14597263.
  • Lu M, Vergara S, Zhang L, et al. (2002). "The amino-terminal domain of the E subunit of vacuolar H(+)-ATPase (V-ATPase) interacts with the H subunit and is required for V-ATPase function". J. Biol. Chem. 277 (41): 38409–38415. doi:10.1074/jbc.M203521200. PMID 12163484.
  • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences". Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–16903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.