Bleach

Bleach is the generic name for any chemical product which is used industrially and domestically to clean, and to remove stains. It often refers, specifically, to a dilute solution of sodium hypochlorite, also called "liquid bleach".

Clorox brand bleach

Many bleaches have broad spectrum bactericidal properties, making them useful for disinfecting and sterilizing and are used in swimming pool sanitation to control bacteria, viruses, and algae and in many places where sterile conditions are required. They are also used in many industrial processes, notably in the bleaching of wood pulp. Bleaches also have other minor uses like removing mildew, killing weeds, and increasing the longevity of cut flowers.[1]

Bleaches work by reacting with many colored organic compounds, such as natural pigments, and turning them into colorless ones. While most bleaches are oxidizing agents (chemicals that can remove electrons from other molecules), some are reducing agents (that donate electrons).

Chlorine, a powerful oxidizer, is the active agent in many household bleaches. Since pure chlorine is a toxic corrosive gas, these products usually contain hypochlorite which releases chlorine when needed. "Bleaching powder" usually means a formulation containing calcium hypochlorite.

Oxidizing bleaching agents that do not contain chlorine are usually based on peroxides such as hydrogen peroxide, sodium percarbonate, and sodium perborate. These bleaches are called 'non-chlorine bleach,' 'oxygen bleach' or 'color-safe bleach.'[2]

Reducing bleaches have niche uses, such as sulfur dioxide used to bleach wool, either as gas or from solutions of sodium dithionite;[3] and sodium borohydride.

Bleaches generally react with many other organic substances besides the intended colored pigments, so they can weaken or damage natural materials like fibers, cloth, and leather, and intentionally applied dyes such as the indigo of denim. For the same reason, ingestion of the products, breathing of the fumes, or contact with skin or eyes can cause health damage.

History

The earliest form of bleaching involved spreading fabrics and cloth out in a bleachfield to be whitened by the action of the sun and water.[4][5] By the 17th century, there was a significant cloth bleaching industry in Western Europe, using alternating alkaline baths (generally lye) and acid baths (such as lactic acid from sour milk, and later diluted sulfuric acid). The whole process lasted up to six months.[4]

Chlorine-based bleaches, which shortened that process from months to hours, were invented in Europe in the late 18th century. Swedish chemist Scheele discovered chlorine in 1774,[4] and in 1785 French scientist Claude Berthollet recognized that it could be used to bleach fabrics.[4] Berthollet also discovered sodium hypochlorite, which became the first commercial bleach, named Eau de Javel ("Javel water") after the borough in Paris where it was produced. Scottish chemist and industrialist Charles Tennant proposed in 1798 a solution of calcium hypochlorite as an alternative for Javel water, and patented bleaching powder (solid calcium hypochlorite) in 1799.[4][6] Around 1820, French chemist Labarraque discovered the disinfecting and deodorizing ability of hypochlorites, and was instrumental in popularizing their use for such purpose.[7] His work greatly improved medical practice, public health, and the sanitary conditions in hospitals, slaughterhouses, and all industries dealing with animal products.[8]

Louis Jacques Thénard first produced hydrogen peroxide in 1818 by reacting barium peroxide with nitric acid.[9] Hydrogen peroxide was first used for bleaching in 1882, but did not become commercially important until after 1930.[10] Sodium perborate as a laundry bleach had been used in Europe since the early twentieth century, but did not become popular in North America until the 1980s.[11]

Mechanism of action

Whitening

Colors of natural organic materials typically arise from organic pigments, such as beta carotene. Chemical bleaches work in one of two ways:

  • An oxidizing bleach works by breaking the chemical bonds that make up the chromophore. This changes the molecule into a different substance that either does not contain a chromophore, or contains a chromophore that does not absorb visible light. This is the mechanism of bleaches based on chlorine but also of oxygen-anions which react through initial nucleophilic attack.[12]
  • A reducing bleach works by converting double bonds in the chromophore into single bonds. This eliminates the ability of the chromophore to absorb visible light. This is the mechanism of bleaches based on sulfur dioxide.[13]

Sunlight acts as a bleach through a process leading to similar results: high energy photons of light, often in the violet or ultraviolet range, can disrupt the bonds in the chromophore, rendering the resulting substance colorless. Extended exposure often leads to massive discoloration usually reducing the colors to white and typically very faded blue.[14]

Antimicrobial efficacy

The broad-spectrum effectiveness of most bleaches is due to their general chemical reactivity against organic compounds, rather than the selective inhibitory or toxic actions of antibiotics. They irreversibly denature or destroy many proteins, making them extremely versatile disinfectants.

Hypochlorite bleaches in low concentration were also found to attack bacteria by interfering with heat shock proteins on their walls.[15]

Classes of bleaches

Most industrial and household bleaches belong to three broad classes:

  • Chlorine-based bleaches, whose active agent is chlorine, usually from the decomposition of some chlorine compound like hypochlorite or chloramine.
  • Peroxide-based bleaches, whose active agent is oxygen, almost always from the decomposition of a peroxide compound like hydrogen peroxide.
  • Sulfur dioxide based bleaches, whose active agent is sulfur dioxide, possibly from the decomposition of some oxosulfur anion.

Chlorine-based bleaches

Chlorine-based bleaches are found in many household "bleach" products, as well as in specialized products for hospitals, public health, water chlorination, and industrial processes.

The grade of chlorine-based bleaches is often expressed as percent active chlorine. One gram of a 100% active chlorine bleach has the same bleaching power as one gram of elemental chlorine.

The most common chlorine-based bleaches are:

  • Sodium hypochlorite (NaClO), usually as a 3–6% solution in water, usually called "liquid bleach" or just "bleach". Historically called "Javel water". It is used in many households to whiten laundry, disinfect hard surfaces in kitchens and bathrooms, treat water for drinking and keep swimming pools free of infectious agents.
  • Bleaching powder (formerly known as "chlorinated lime"), usually a mixture of calcium hypochlorite (Ca(ClO)
    2
    ), calcium hydroxide (lime, Ca(OH)
    2
    ), and calcium chloride (CaCl
    2
    ) in variable amounts.[16] Sold as a white powder or in tablets, is used in many of the same applications as sodium hypochlorite, but is more stable and contains more available chlorine.
  • Chlorine gas (Cl
    2
    ). It is used as a disinfectant in water treatment, especially to make drinking water and in large public swimming pools. It was used extensively to bleach wood pulp, but this use has decreased significantly due to environmental concerns.
  • Chlorine dioxide (ClO
    2
    ). This unstable gas is generated in situ or stored as dilute aqueous solutions. It finds large-scale applications for the bleaching of wood pulp, fats and oils, cellulose, flour, textiles, beeswax, skin, and in a number of other industries.

Other examples of chlorine-based bleaches, used mostly as disinfectants, are monochloramine, halazone, and sodium dichloroisocyanurate.[17]

Peroxide-based bleaches

Peroxide-based bleaches are characterized by the peroxide chemical group, namely two oxygen atoms connected by a single bond, (–O–O–). This bond is easily broken, giving rise to very reactive oxygen species, which are the active agents of the bleach.

The main products in this class are:

  • Hydrogen peroxide itself (H
    2
    O
    2
    ). It is used, for example, to bleach wood pulp and hair or to prepare other bleaching agents like the perborates, percarbonates, peracids, etc.
  • Sodium percarbonate (Na
    2
    H
    3
    CO
    6
    ), an adduct of hydrogen peroxide and sodium carbonate ("soda ash" or "washing soda", Na
    2
    CO
    3
    ). Dissolved in water, it yields a solution of the two products, that combines the degreasing action of the carbonate with the bleaching action of the peroxide.
  • Sodium perborate (Na
    2
    H
    4
    B
    2
    O
    8
    ). Dissolved in water it forms some hydrogen peroxide, but also the perborate anion (B(OOH)(OH)
    3
    ) which can perform nucleophilic oxidation.[18]
  • Peracetic (peroxoacetic) acid (H
    3
    CC(O)OOH
    ). Generated in situ by some laundry detergents, and also marketed for use as industrial and agricultural disinfection and water treatment.[19]
  • benzoyl peroxide ((C
    6
    H
    5
    COO)
    2
    ). It is used in topical medications for acne[17] and to bleach flour.[20]
  • Ozone (O
    3
    ). While not properly a peroxide, its mechanism of action is similar. It is used in the manufacture of paper products, especially newsprint and white Kraft paper.[21]
  • Potassium persulfate (K2 S2O8) and other persulfate salts. It, alongside ammonium and sodium persulfate, are common in hair lightening products.[22]
  • Permanganate salts such as Potassium permanganate (KMnO4).

In the food industry, other oxidizing products like bromates are used as flour bleaching and maturing agents.

Reducing bleaches

Sodium dithionite (also known as sodium hydrosulfite) is one of the most important reductive bleaching agents. It is a white crystalline powder with a weak sulfurous odor. It can be obtained by reacting sodium bisulfite with zinc

2 NaHSO3 + Zn → Na2S2O4 + Zn(OH)2

It is used as such in some industrial dyeing processes to eliminate excess dye, residual oxide, and unintended pigments and for bleaching wood pulp.

Reaction of sodium dithionite with formaldehyde produces Rongalite,

Na2S2O4 + 2 CH2O + H2O → NaHOCH2SO3 + NaHOCH2SO2

which is used in bleaching wood pulp, cotton, wool, leather and clay.[23]

Environmental impact

A Risk Assessment Report (RAR) conducted by the European Union on sodium hypochlorite conducted under Regulation EEC 793/93 concluded that this substance is safe for the environment in all its current, normal uses.[24] This is due to its high reactivity and instability. The disappearance of hypochlorite is practically immediate in the natural aquatic environment, reaching in a short time concentration as low as 10−22 μg/L or less in all emission scenarios. In addition, it was found that while volatile chlorine species may be relevant in some indoor scenarios, they have a negligible impact in open environmental conditions. Further, the role of hypochlorite pollution is assumed as negligible in soils.

Industrial bleaching agents can also be sources of concern. For example, the use of elemental chlorine in the bleaching of wood pulp produces organochlorines and persistent organic pollutants, including dioxins. According to an industry group, the use of chlorine dioxide in these processes has reduced the dioxin generation to under detectable levels.[25] However, respiratory risk from chlorine and highly toxic chlorinated byproducts still exists.

A recent European study indicated that sodium hypochlorite and organic chemicals (e.g., surfactants, fragrances) contained in several household cleaning products can react to generate chlorinated volatile organic compounds (VOCs).[26] These chlorinated compounds are emitted during cleaning applications, some of which are toxic and probable human carcinogens. The study showed that indoor air concentrations significantly increase (8–52 times for chloroform and 1–1170 times for carbon tetrachloride, respectively, above baseline quantities in the household) during the use of bleach-containing products. The increase in chlorinated volatile organic compound concentrations was the lowest for plain bleach and the highest for the products in the form of "thick liquid and gel." The significant increases observed in indoor air concentrations of several chlorinated VOCs (especially carbon tetrachloride and chloroform) indicate that the bleach use may be a source that could be important in terms of inhalation exposure to these compounds. While the authors suggested that using these cleaning products may significantly increase the cancer risk,[27] this conclusion appears to be hypothetical:

  • The highest level cited for a concentration of carbon tetrachloride (seemingly of highest concern) is 459 micrograms per cubic meter, translating to 0.073 ppm (part per million), or 73 ppb (part per billion). The OSHA-allowable time-weighted average concentration over an eight-hour period is 10 ppm,[28] almost 140 times higher;
  • The OSHA highest allowable peak concentration (5-minute exposure for five minutes in a 4-hour period) is 200 ppm,[28] twice as high as the reported highest peak level (from the headspace of a bottle of a sample of bleach plus detergent).

Disinfection

Sodium hypochlorite solution, 3–6%, (common household bleach) is typically diluted for safe use when disinfecting surfaces and when used to treat drinking water.[29][30]

A weak solution of 2% household bleach in warm water is typical for sanitizing smooth surfaces prior to the brewing of beer or wine.

US Government regulations (21 CFR Part 178) allow food processing equipment and food contact surfaces to be sanitized with solutions containing bleach, provided that the solution is allowed to drain adequately before contact with food, and that the solutions do not exceed 200 parts per million (ppm) available chlorine (for example, one tablespoon of typical household bleach containing 5.25% sodium hypochlorite, per gallon of water).

A 1-in-5 dilution of household bleach with water (1 part bleach to 4 parts water) is effective against many bacteria and some viruses, and is often the disinfectant of choice in cleaning surfaces in hospitals (primarily in the United States). Even "scientific-grade", commercially produced disinfection solutions such as Virocidin-X usually have sodium hypochlorite as their sole active ingredient, though they also contain surfactants (to prevent beading) and fragrances (to conceal the bleach smell).[31]

See Hypochlorous acid for a discussion of the mechanism for disinfectant action.

Treatment of gingivitis[32]

Diluted sodium hypochlorite at a rate of 2000–1 (0.05% concentration) may represent an efficacious, safe and affordable antimicrobial agent in the prevention and treatment of periodontal disease.

Color safe bleach

Color safe bleach is a chemical that uses hydrogen peroxide as the active ingredient (to help remove stains) rather than sodium hypochlorite or chlorine.[33] It also has chemicals in it that help brighten colors.[34] Hydrogen peroxide is also used for sterilization purposes and water treatment, but its disinfectant capabilities may be limited due to the concentration in the colorsafe bleach solution as compared to other applications.[34]

Health hazards

The safety of bleaches depends on the compounds present, and their concentration. Generally speaking, the ingestion of bleaches will cause damage to the esophagus and stomach, possibly leading to death. On contact with the skin or eyes, it causes irritation, drying, and potentially burns. Inhalation of bleach fumes can damage the lungs. Personal protective equipment should always be used when using bleach. Bleach should never be mixed with vinegar or other acids as this will create highly toxic chlorine gas and can cause severe burns internally and externally.[35][36][37][38] Mixing bleach with ammonia similarly produces toxic chloramine gas, which can burn the lungs.[35][36][38] Mixing bleach with hydrogen peroxide results in an exothermic chemical reaction that releases oxygen, and may cause the contents to splatter and cause skin and eye injury. Heating bleach and boiling it may produce chlorates, a strong oxidizer which may lead to a fire or explosion.

Fraudulent product Miracle Mineral Supplement, whose main active ingredient is sodium chlorite, is sometimes dangerously promoted as a cure or "healing water" for a wide variety of health conditions.[39][40] During the 2019–20 coronavirus pandemic advocates of Miracle Mineral Supplement (MMS), such as QAnon proponent Jordan Sather and Mark Grenon who are affiliated with the Genesis II Church of Health and Healing, began to suggest this would treat COVID-19.[41][42] This message was amplified by the U.S. President Trump on April 23, 2020, during a corona virus briefing.[43][44][45] The CDC, scientists, and bleach companies have since emphasized bleach is extremely harmful to humans and should not be ingested or injected.[46][47] MSN News quoted Professor Rob Chilcott, a toxicology expert from the University of Hertfordshire, that there is no scientific evidence that bleach or disinfectants will affect viral particles, but that injecting bleach would “likely result in significant, irreversible harm and probably a very unpleasant death."[48]

See also

  • Tooth whitening

References

  1. "12 Smart Ways to Use Bleach - Reader's Digest". 9 March 2010.
  2. "Oxygen Bleach Vs. Chlorine Bleach". Sciencing. Retrieved 16 April 2018.
  3. Phillips, H. (2008). "The Bleaching of Wool with Sulphur Dioxide and with Solutions of Sulphites". Journal of the Society of Dyers and Colourists. 54 (11): 503–512. doi:10.1111/j.1478-4408.1938.tb01992.x.
  4. Chisholm, Hugh, ed. (1911). "Bleaching" . Encyclopædia Britannica (11th ed.). Cambridge University Press.
  5. Aspin, Chris (1981). The Cotton Industry. Shire Publications. p. 24. ISBN 978-0-85263-545-2.
  6. Chisholm 1911.
  7. Scott, James, transl. (1828). On the disinfecting properties of Labarraque's preparations of chlorine Published by S. Highley.
  8. Labarraque, Antoine-Germain, Nouvelle biographie générale, volume 28 (1859), columns 323-324.
  9. L. J. Thénard (1818). "Observations sur des nouvelles combinaisons entre l'oxigène et divers acides". Annales de chimie et de physique. 2nd Series. 8: 306–312.
  10. Tatjana Topalović (2007). Catalytic Bleaching of Cotton: Molecular and Macroscopic Aspects p 16. Thesis, University of Twente, the Netherlands. ISBN 978-90-365-2454-4. Retrieved 8 May 2012.
  11. Milne, Neil (1998). "Oxygen bleaching systems in domestic laundry". J. Surfactants and Detergents. 1 (2): 253–261. doi:10.1007/s11743-998-0029-z.
  12. Mayer, Robert J.; Ofial, Armin R. (22 February 2018). "Nucleophilic Reactivities of Bleach Reagents". Organic Letters. 20 (10): 2816–2820. doi:10.1021/acs.orglett.8b00645. PMID 29741385.
  13. Field, Simon Q (2006). "Ingredients – Bleach". Science Toys. Retrieved 2 March 2006.
  14. Bloomfield, Louis A (2006). "Sunlight". How Things Work Home Page. Archived from the original on 11 May 2013. Retrieved 23 February 2012.
  15. Jakob, U.; J. Winter; M. Ilbert; P.C.F. Graf; D. Özcelik (14 November 2008). "Bleach Activates A Redox-Regulated Chaperone by Oxidative Protein Unfolding". Cell. 135 (4): 691–701. doi:10.1016/j.cell.2008.09.024. PMC 2606091. PMID 19013278. Retrieved 19 November 2008.
  16. Vogt, Helmut; Balej, Jan; Bennett, John E.; Wintzer, Peter; Sheikh, Saeed Akbar; Gallone, Patrizio; Vasudevan, Subramanyan; Pelin, Kalle (2010). "Chlorine Oxides and Chlorine Oxygen Acids". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a06_483.pub2. ISBN 978-3527306732.
  17. "WHO Model List of Essential Medicines (19th List)" (PDF). World Health Organization. April 2015. Archived (PDF) from the original on 13 December 2016. Retrieved 8 December 2016.
  18. Douglass F. Taber. "Oxidizing agents: Sodium perborate". Retrieved 7 June 2012.
  19. V. Namboodiri and A. Garg (2017): "Evaluation of Combined Peracetic acid and UV treatment for Disinfection of Secondary Wastewater Effluent". document EPA/600/R-17/172, National Risk Management Research Laboratory, U.S. Environmental Protection Agency,
  20. (2004) "Benzoyl peroxide" FAO Publication FNP 52 Addendum 12.
  21. "Ozo formulas". Ozone Information. Archived from the original on 15 July 2011. Retrieved 9 January 2009.
  22. Pang, S.; Fiume, M. Z. (2001). "Final Report on the Safety Assessment of Ammonium, Potassium, and Sodium Persulfate". International Journal of Toxicology. 20 (3_suppl): 7–21. doi:10.1080/10915810152630710. PMID 11766134.
  23. Herman Harry Szmant (1989). Organic building blocks of the chemical industry. John Wiley and Sons. p. 113. ISBN 978-0-471-85545-3.
  24. European Union Risk Assessment Report. 2007. Sodium Hypochlorite (CAS No: 7681-52-9; EINECS No: 231-668-3): Final report, November 2007 (Final Approved Version); see Risk Assessment Report on Sodium Hypochlorite, Scientific Committee on Health and Environmental Risks, 12 March 2008.
  25. "ECF: The Sustainable Technology" (PDF). Alliance for Environmental Technology. Archived from the original (PDF) on 14 April 2008. Retrieved 19 September 2007.
  26. Odabasi, Mustafa (March 2008). "Halogenated Volatile Organic Compounds from the Use of Chlorine-Bleach-Containing Household Products". Environmental Science & Technology. 42 (5): 1445–1451. Bibcode:2008EnST...42.1445O. doi:10.1021/es702355u. PMID 18441786.
  27. Odabasi, M., Halogenated Volatile Organic Compounds from the Use of Chlorine-Bleach- Containing Household Products, Slide presentation (2008)
  28. "Chemical Sampling Information: Carbon Tetrachloride". OSHA. 16 June 2004. Retrieved 4 December 2009.
  29. Dvorak, Glenda (February 2005). "Disinfection" (PDF). Center for Food Security and Public Health. Ames, IA: Center for Food Security and Public Health, Iowa State University. p. 12. Archived from the original (PDF) on 19 June 2010. Retrieved 7 February 2011.
  30. "Guidelines for the Use of Sanitizers and Disinfectants in Child Care Facilities". Virginia Department of Health. Archived from the original on 14 June 2010. Retrieved 16 March 2010.
  31. "KAM Scientific".
  32. De Nardo, R.; Chiappe, V. N.; Gómez, M.; Romanelli, H.; Slots, J. R. (2012). "Effects of 0.05% sodium hypochlorite oral rinse on supragingival biofilm and gingival inflammation". International Dental Journal. 62 (4): 208–212. doi:10.1111/j.1875-595X.2011.00111.x. PMID 23017003.
  33. "Dr Laundry - Clorox". 28 October 2015. Archived from the original on 9 June 2011.
  34. Non Chlorine Bleach – Stain Fighter & Color Booster Liquid | Clorox
  35. "Dangers of Mixing Bleach with Cleaners". Washington State Department of Health. Retrieved 12 February 2020.
  36. "Some Things Just Don't Mix: Poison Control Tips for Chemicals". Missouri Poison Center. 2 March 2018. Retrieved 12 February 2020.
  37. "Lesson Learned - Accidental Mixing of Bleach and Acid". Regents of the University of California. Retrieved 12 February 2020.
  38. Freedman, Lisa; Mcdonough, Lauren Smith (22 March 2019). "6 Cleaning Products You Should Never, Ever Mix". Good Housekeeping. Retrieved 12 February 2019.
  39. Food and Drug Administration (12 August 2019). "FDA warns consumers about the dangerous and potentially life threading side effects of Miracle Mineral Solution". fda.gov. Archived from the original on 14 August 2019. Retrieved 16 August 2019.
  40. Kuruvilla, Carol (22 May 2019). "New Jersey Pastor Has Been Passing Off Bleach As A 'Miracle Cure' In Uganda: Report". HuffPost. Retrieved 25 April 2020.
  41. Halperin, Dan, QAnon YouTubers Are Telling People to Drink Bleach to Ward Off Coronavirus | Rolling Stone News 1/30/20, retrieved 25 April 2020
  42. Sommer, Will (10 February 2020). "QAnon Conspiracy Theorists' Magic Cure for Coronavirus Is Drinking Lethal Bleach". Daily Beast. Archived from the original on 10 February 2020. Retrieved 25 April 2020.
  43. Pilkington, Ed (24 April 2020). "Revealed: leader of group peddling bleach as coronavirus 'cure' wrote to Trump this week". The Guardian. ISSN 0261-3077. Retrieved 25 April 2020.
  44. "Analysis | 3 takeaways from Thursday's White House coronavirus briefing". Washington Post. Retrieved 25 April 2020. |first= missing |last= (help)
  45. Rogers, Katie; Hauser, Christine; Yuhas, Alan; Haberman, Maggie (24 April 2020). "Trump's Suggestion That Disinfectants Could Be Used to Treat Coronavirus Prompts Aggressive Pushback". The New York Times. ISSN 0362-4331. Retrieved 25 April 2020.
  46. "No, don't inject disinfectant: Outcry over Trump's musing". Los Angeles Times. 24 April 2020. Retrieved 25 April 2020.
  47. Rogers, Katie; Hauser, Christine; Yuhas, Alan; Haberman, Maggie (24 April 2020). "Trump's Suggestion That Disinfectants Could Be Used to Treat Coronavirus Prompts Aggressive Pushback". The New York Times. ISSN 0362-4331. Retrieved 25 April 2020.
  48. "'Injecting bleach kills!': UK scientists issue warning after Trump coronavirus comments". www.msn.com. Retrieved 25 April 2020.

Further reading

  • Bodkins, Dr. Bailey. Bleach. Philadelphia: Virginia Printing Press, 1995.
  • Trotman, E.R. Textile Scouring and Bleaching. London: Charles Griffin & Co., 1968. ISBN 0-85264-067-6.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.